THE FRENCH INTERNATIONAL EXHIBITION

In a passing notice a few weeks ago of the awards o the juries of the French Exhibition we called attention to the fact that England was altogether absent from the
list of the new order of recompenses for well managed establishments. As it was quite impossible to suppose fo a moment that we were without worthy instances of the most enlightened and judicious government of old and important factories in every branch of industry-in fact,
as we and every one else knew, that there were many such as we and every one else knew, that there were many such in England capable of favourable comparison with most of the great continental houses so justly celebrated in this respect, we were fain to assume that our own leading men
had not come forward, and that no trouble had been taken to bring them forward. That few, if any, of our great employers would have undertaken of their own accord the
task of expatiating on their respective philanthropy and their good deeds in general, we have no doubt; but they were not left to themselves, they were called upon by the British commission to supply such data as would enable them to useful as giving examples of good order, in some cases approaching to perfection, in attention to the true interest
of large bodies of workpeople.

This call for statements, which might not have been voluntarily presented, was responded to by no less than thirty-seven of our leading English and Scotch firms. A volume of considerable size and of great interest was actually printed by the commission embodying these reports, some of which were little histories in themselves, reports, some of back beyond the commencement of the century, and all of them were illustrative of hearty efforts in a good cause. That volume, however, has never been
allowed to issue from the sacred precincts of South Kensington; no adjudication on the merits of the many English establishments of which it treated has which some, at least, of them merited, nothing more has been heard of the matter. We may be permitted to ask, some explanation of this apparent failure of justice, feeling confident, as we have reason to do, that it did not arise from any ungenerous opposition on the part of the foreign members of the jury of this uew but by no means unimportant class of awards. Did it or did it not spring from which cause we would be left hors de combat, and if so who is to blame?
We leave this question for those to answer who have had the distribution of the funds voted by Parliament for presence of thellighthouse (which, by the bye, is charitably presence of thellighthouse (which, by the bye, is charitably
left out of all French engravings of the Champs de Mars), and the absence of any national civil engineering exhibit, have well fulfilled their trust.
The $£ 116,000$ voted by Parliament will, it is expected, not be much, if at all, exceeded, Mr. Bernal Osborne's prophecies to the contrary notwithstanding. At the 1855 voted for the expenses of British representation, and in one cedent, for when lately the parliamentary committee recommended that a sum not exceeding $£ 25,000$ should be parpose of purchasing scientific and technical apparatus of porpose of purchasing the treasury practically annulled the with the consent of Parliament, might expend on these objects any sum, not exceeding $£ 25,000$, that might remain as a balance of the grant already made after th payment of all expenses connected wik injudicious expenditure, it cannot but be felt that this is not a time when we mulating and bestowing scientific information, and if the recommendation of the committee be ultimately carried out, and the sum which it proposed be wisely expended, we can see no more fitting object for a national vote.
The island of Billancourt was again on Monday and Tuesday the scene of one of those pseudo trials of agri-
cultural machines which have been conducted with more or less irregularity all through the season. In respect to these trials the English interest and the agricultural interest in general has suffered more severely from the interest in general has suffered more severely from the
proverbial absence of English jurors than have any other
of the hundred classes open to competition. From the of the hundred classes open to competition. From the number and frequency of agricultural exhibitions in
England it is possible to count on tolerably efficient England it is possible to count on tolerably efficient
arrangements and a tolerably competent tribunal in our arrangements, and a there at least exhibitors have timely advice of the days of trial, and have some general idea of the mode in which the contests will be conducted; but the
arrangements for similar trials duping the Exhibition arrangements for simiar trials duping the Exhibition of a portion of the permanent exhibits by placing them in
their out-of-the-way quarters at Billancourt, has been their out-of-the-way quarters at Billancourt, has been
attended with great expense and inconvenience, and has attended with great expense and inconvenience, and has
proved a complete failure from the almost total absence of visitors.
A space of ground equal in extent to an average local Exhibition showyard in England is tolerably well filled with most varieties of farming implements and portable engines, and partially covered with wooden sheds and annexes, besides being flanked with several very temporary
refreshment booths, and further ornamented by a most refreshment booths, and further ornamented by a most woe-begone specimen of thé chalet class of cafes. The
Parisians have no notion of going so far to fare so badly, Parisians have no notion of going so far to fare so badly,
and the regular sight-seeing visitor geuerally finds out how to get there about the time that he begins to see that
he has a great many more places of real interest to visit he has a great many more places of real interest to visit
in Paris and at the Exhibition than he can well accomplish, and wisely leaves out Billancourt. The consequence is that the average attendance there is popularly estimated at about six souls, and from the general appearance of the place we cannot but regard it as a very benighted region.
ought to have been done on the day of the threshing machine tests, which, as we noticed, only occupied a few minutes. A dynamometric test of the portable engines employed was then to have taken place, but from whatever cause, the remainder of the day passed over without it, impression that it no longer formed part of the pro gramme. However, a few days afterwards they were informed that such a competition would take place on the 26 th and 27 th insts, and were requested to providethemselves with their own brakes and come to execution. This produced, on the part of our English exhibitors, no smali reel Class 74, Mr. Scott, who was acting as supplementary juror -if we may use the expression in relation to the first and, indeed, as it turned out there was a notable deficiency of jurors of any nation, besides which some of the English firms had sent their attendants home. One Eastern Counties firm took a dignified leave of the world in general, and the Imperial Commission in particular, through the medium of a well-expressed and badly-lithographed letter in which compete, except at the Royal Agricultural Shows, where they have recently obtained the first prize; that their mechanics had gone home, and, finally, that seeing neithe reason nor advantage in breaking their rule on the pre Now there has been quite sufficient reason, from the irregi larity and imperfection of previous trials, and the total neglect of the class by English jurymen for any competitor be allowed to suggest that if the firm in question make it a rule not to be tested by any but one particular tribuna they ought to abstain from attending any but its exhibitions. Other exhibitors, with or without protests, declined to compete, and the result was that seven enginesthree English and four French-were brought to trial on Monday, and some others were experimented with on elsewhere, from which our readers will readily draw thei own inferences of the results of the competition. The dynamometers were all applied to the driving wheels of the engines, and a pleasing diversity existed as to the weights, speeds, \&c. The four French brakes were all put suspended. Messrs. Marshall and Ransome and Sims sus pended their weights directly from pins on the friction bands, the latter firm employing a heavier weight than the maximum intended to be sustained by the engine, and counterbalancing it by a Salter's spring balance at the exerted by this spring during the trial being deducted from the weight carried on the scale-board of the dynamometer. This arrangement has the advantage of rendering the test more accurate, and of giving a greater range of speed in driving the engine, for within the weight actually sustained can be varied by merely tightening or loosening the brake band. It must, howprecien of the instrument a careful and constant observa tion of the tension of the spring would be required. At best, as compared with the means at the disposal of the Royal A gricultural Society, those employed at the great French Exhibition have been but makeshifts, and the members, M. Gardvoinnet, an able French professor of agriculture.
Although no such experiment had been hitherto contemplated, it is now understood that a steam plough trial will take pace at Sloud this week. It will take place in the present number. The daily attendance at the Exhibition seems to be in direct proportion to the temperatare. After the heavy thunderstorm and rainfall of Monday night both visitors and temperature considerably decreased, though in reality the weather was much more enjoyable. Some of the more temporary structures are already manifesting signs of decrepitude, and as for the and, we presume finally blown from their high time, The great iron doors of the Grande Porte have fallen down like guillotines a second time, and the chairs, sweep from the front of the cafes, so a clean the little passing events of a small world, which will soon be a thing of the past. The comments of some of the English journals on technical subjects at the Exhibition often anord watler for a lishe tively criticism. The Mr Andrson of Woolw on machine tools one series which will appear in the South Kensington report. In order, we suppose, to embellish an article which required no commendation, it was accompanied by a page of good engravings, purporting to represent " machine tools,
class 54 ," and further described as the various kinds of "machine tools for cutting iron." The sheet illustrated but one tool in the Exhibition, the only one shown by one of the English exhibiting firms, the other four engravings, purely imaginary. Although not directly in connection with the Exhibition, as it has a bearing on the important cognate subject of techical education, we dent of great experience," of the Pall Mall Gazette, has recently fallen. He describes a visit to an iron merchant's yard in London, where he was told that rolled iron was sent into the country from France, Belgium, and Prussia, better done than we could do it, and of a larger size; and on another occasion, when
visiting a Scotch shipbuilding yard, he is surprised to find visiting a Scotch shipbuilding yard, he is surprised to find a certain important part of a marine engine, weighing from
fifteen to twenty tons, now made abroad, of solid steel, instead of being made in nine different pieces, as he had seen it some years before at the same estiblishment. On
inquiry he is informed of the astounding fact that this
"piece of machinery" of fifteen tons weight (a crank
shaft, we presume) cannot be had "at home at any price" shaft, we presume) cannot be had "at home at any price," and is imported at a cost of "more than half a crown a
pound." We must say that we should consider this Scotch shipbuilder a very valuable customer-one, in fact, whom it would be a privilege toserve. Wehave alwaysmaintained that the more enlightened continental nations have made such good use of the inferior natural advantages which they possess as to leave us little chance of competing with them on their own ground, and to enable them, as in the case of Belgium, to send some inferior qualities of bar into our southern markets. But the impression conveyed by the letter to which we allude is calculated merely to amuse mechanical engineers and mislead the general public. There are no qualities of iron produced abroad which cannot be just as well turned out in England. A 20 -ton crank shaft is but a trifle to any of a dozen of our largest orges, and we doubt if half the number of establishments could be pointed out elsewhere in Europe in which so heavy a forging could be produced. The absurdity of a steel crank shaft costing 2s. 6d. a pound is self-evident We have by no means done with urging on our countrymen the necessity for a higher class of technical education; but arguments based on mistaken statements of technical facts will do injury to the cause instead of helping it.

PARIS EXHIBITION-BOILER FITTINGS. Boiler attachments, auxiliary to the safe and conve nient use of these appliances for raising steam, exist in multitudes in the Exhibition-more especially in the de partments of Great Britain, France, Germany, and Bel gium-which, including the United States,
Amongst these all, there is not probably a prettier or more perfect piece of boiler fitment than the safety apparatus patented and exhibited by Mons. Lethuillier-Pinel manufacturing engineer of Paris and of Rouen, for indicating the water level in boilers, and giving audible notice of the insufficiency or surplusage of water supply in the same Numerous as have been the contrivances for enabling the water level inside the opaque boiler to be judged of from the outside - and of which some score or two may be found in systematic works on the steam engine, or scattered in the pages of technical journals-those in actual and trusted use may be almost resolved into three classes, which are known and common everywhere, though employed in many slightly differing forms, viz, the gauge cock, the wate glass, and the indexed float.
The two first, as every practical engineer knows, afford but the most uncertain indications of water level, unde many conditions of use. With a priming boiler-greasy, or soapy, or impalpably muddy water-or willating upo a very rough road, or a marine boiler in a short, chopping seaway-it is not unusual to see all three gauge water, in a sense sufficiently pronounced in any one of them, to decide the actual level of the water, which has really

no decisively-marked surface within. Again, with muddy water, or that containing certain mineral salts which rapidly remove the smooth surface from the interio of the gauge glass, its indications soon cease to be
very distinct, while, with the water within the boiler violently) in. Lagitation, and especially if it
should oscillate-as it often does in small marine
boilers, so that bubbles of steam rise up and break with boilers, so that bubbles of steam rise up and break with the water occupying the glass, but whose level is momentarily changing -the water glass becomes a very truthless instrument; in fact, both gauge cocks and water glasses
can scarcely be said to work perfectly, except in the dignified quietude of a fine boiler-house attached to some grand factory or waterworks, or other like cirsome grand factory or waterworks, or other like cir-
cumstanced and leisurely worked engine. And even here their indications address the eye alone, and they never force their notice upon the lazy or inattentive stoker. The water gauge float possesses the immense
advantage that when the float itself inside the boiler is large and heavy enough, it swims at practically large and heavy enough, it swims at practically an
invariable level, and that this level is really that of the water in the boiler, or in a constant relation to it, no matter almost how or to what extent that may be agitated. There
have, hence, been very numerous attempts made to connect the float within the boiler with an index external to it, which shall give to the eye indications of the state of the water level within, and shall address the ear, by releasing
the steam upon a whistle, in the event of the water falling the steam upon a whistle, in the event of the water falling
dangerously low. The difficulty always has been how to pass the rod or wire connecting the float within, with the indicator and whistle apparatus without, so that there shall be little or no friction, nor any chance of the rod sticking fast, or being wilfully or aceidentally set fast in the stuffing-box or its equivalent, which was indispensable
to make the shell of the boiler steam tight at the point of to make the shell of the boiler st
intersection with the float wire.
The old Watt float wire passed through a simple hemp-packedstuffing-box-bend the wire, put the least kink within the range of its play, and it would no longer work freely, if at all. The very best stuffing-box for the wire we have
ever seen was that contrived by the late Mr. George Forrester, of the Vauxhall Foundry, Liverpool. It consisted in a bored gun-metal tube of a few inches in length float-and of about six-tenths of an inch in diameter This was provided with a flange collar outside and a screw and nut within the boiler to secure it in place. The copper float wire at the proper point of its length had
two small brass collars brazed on to it, each about fourtenths of an inch in diameter and about the same apart in the line of the wire. Between these a round packing lap of tallowed hemp was made, so as to pass easily, but steam-
tight, into the tube in which it worked up and down with tight, into the tube in which it worked
what the French call douce frottement.
This arrangement worked admirably while it was kept in order-no kinking or bending of the float wire by
rough usage did it any harm. But it was not perfect; if packed too tight by a rough or stupid hand it was liable to ecome deceptive, if too loose it was always fizzing out a eam, and dripping condensed water on the boiler-
to its serious corrosion and detriment; worse than day by day accumulated in the tube and got impacted known the wire set so fast by this that the float could not known the wire set so fast by this that the float could not
be lifted by it. The writer himself, in one or two instances, with a view to remedy this, substituted a short plug of
good elastic cork between two screw or adjustable collars good elastic cork between two screw or adjustable collars
for the hemp. This worked nicely for a time, but cork will not stand even low pressure steam very long before it
becomes soft and falls to pieces. The vital point, then, of all water level float arrangements is to find a method of connection between the inside and the outside of the boiler without
friction, and when ouce adjusted, without the probability of derangement. It is to this that M. Lethuillier-Pinel has addressed his ingenuity, and with remarkable success.
His arrangement, of which he has several varieties, which are exhibited at full size and with the floats upon water, will be readily understood from the following Figs.
1 and 2 -the former being a side elevation, and the latter 1 and 2-the former being a side elevation, and the latter indicator: In Fig. 1 the safety valve (or one of them) co stituting a part of the apparatus in Fig. 2, that
omitted. The inventor manufactures (and we may add very moderate prices) three or four standard forms of the
apparatus, the most complete being that in which the apparatus, the most complete being that in which the
safety valve, the manometer pressure guage, the waterlevel indicator, and the whistles for alarm, at too little and too much water-are all combined.

A relatively larger copper hollow float, in form that of two spherical segments united base to base, and proved to
ten atmospheres, so as to awoid any chance of its being
burst by the included air when heated, is adjusted as to burst by the included air when heated, is adjusted as weight so as to float with its greatest horizontal diameter
at the water level. Above this is secured upon the boiler a vertical pipe, arranged as in Fig. 2, the lower part, except
the screw collar, passing through the boiler, being of cast the screw collar, passing through the boiler, being of cast
iron, and the upper part, together with this collar, \&c., of iron, and the upper part, together with this collar, \&c., of has a flat side, which is graduated upwards and downwards
from a zero point which is the normal water level, into from a zero point which is the normal water level, into
centimetres above and below this. This surface is covered by a movable glass plate leaving a space between the
parallel glass and brass surfaces of about four-tenths of an parallel glass and brass surfaces of about four-tenths of an white with black graduations; upon the top of all is placed the manometer steam gauge
placed a small valve, so arranged as to permit, when opened, a current of steam to issue through a metallic
whistle. There may be two of these whistle. There may be two of these-one higher to indi-
cate surplus of water, and one lower for deficiency. From the top of the float a metallic rod rises up, passes freely, but without needless freedom, through the lower collar of the vertical pipe; and again, in the same way, through a collan formed

The top part of this rod is provided with a flat piece, to which is screwed or rivetted between cheeks of brass nole of this magnet is bent at right angles to the rest of the piece, and rounded and polished at its extremity,
which, wheu the carrying rod is vertical and in position,
rubs with very slight friction against the smooth back face of the graduated brass plate. At the rear of the magnet carrier is fixed a slight spring of hard gun metal, which
bears with gentle pressure against the interior of the pipe bears with gentle pressure against the interior of the pipe
opposite it, and thus ensures the upper pole of the magnet opposite it, and thus ensures the upper pole of the magnet
remaining always in contact with the back of the graduated plate.
The float, by its form, secures the constant perpendiularity of the float rod. The two collars through which it freely passes within the pipe, prevent departure from this beyond narrow limits. Within these limits alone the small spring is needed. Before the glass plate outside the graduated brass one is closed, a black varnished or blued
steel index in the form shown at full size in Fig. 3, is placed horizontally and loosely at the bottom. It is instantly caught up by the upper pole of the magnet inside, as soon as this is depressed so as to come near it,
and it thereafter remains always in suspension, in close and it thereafter remains always in suspension, in close contact with the graduated brass plate, and at whatever
level upon this corresponds with that of the top pole of level upon this corresponds with that of the top pole of
the magnet inside. The horizontality of this magnetic the magnet inside. The horizontality of this magnetic
index or armature is secured by the form of the top pole of the magnet itself, which, being a flat bar bent as has been described, has its pole, when in contact with the back of the scale plate, also horizontal, i.e., the contact is a horizontal line.
We
We have thus established communication between the
free rod and magnet inside, and the equally free rolling free rod and magnet inside, and the equally free rolling though outside, by means of the unseen and frictionless, mere idea is prob, constraining force of magnetism. The has been often suggested, and occasionally applied; we are not quite sure even but that we have met with the notion, proposed as a mode for connecting boiler floats and indices in some British periodical of former years, but it is but justice to the inventor to say we have never seen the idea so perfectly, and in every detail, efficiently worked out in practice. The rapidity and exactness with which the
rolling index follows the motions of the float and magnet within, however sudden or brusque, are strikingly shown at the Exhibition, where one is at liberty to jerk the floats by hand up or down as fast and as far as we can; and yet it is
found impossible to detach or to derange the position of the index in the slightest degree. The magnets are manu factured, we are informed, by the usually practised magnetism touch, and they are stated not to lose thei other conditions, we should not expect them to do so. When we forcibly detached one of the indices and put it bottom of the scale plate, it was instantly again seized by regained its position, and that always perfectly horizontal. It remains only to describe the arrangement by which which is shown on Fig. 2, this needs but a few words The adjustable collar and tappet seen upon the float rod when it comes in contact with the little latch lever of the the momentary unsupported weight of the float; and as the absolute weight of this is considerable, and the area and friction of the steam valve are very small, there is ample force to effect this. When the float rod has descended to as will easily be uppermost collar rests upon that of the pipe, piece or cam on the rod cannot descend below the latch this latter is released, and the whistle valve closes of itself. But the apparatus may also be so arranged that once the float has been depressed to this position through the carelessness of the stoker, the instrument willnot rise to zero again until readjusted by hanc, so that it then stifled. The arrangement for blowing a whistle for showing too much water is almost precisely similar, but in commerce more tha 8000 of these indicators supplied in com

THE CHALLENGE COMPETITION OF SAFES FOR THE DEPOSIT OF VALUABLES AT PARIS
This contest, now likely to prove remarkable in more respects than one-is ended, at least for the present as it would appear, though not concluded.
Events have, in fact occurred, which have resulted in the formal withdrawal, under protest, of the two English engineers, in the resignation of the chairman of the committee,
Mons. Douliot, and, we believe, also in that of the secretary,
There has ceased, therefore, to be any committee, and as no decision had been arrived at when this took place, none can be arrived at now, further than what follows we pre-
sume naturally from the turn events have taken-namely sume naturally from the turn events have taken-namely,
that the challenge stakes must be withdrawn by the re that the challenge stakes must be withdrawn by the respective parties each paying his own expenses, and that
no verdict can be given other than that which the public will undoubtedly award upon the judgment of all the facts, when these shall have been published. The facts of the trial by experts of the two safes, up to the conclusion for that day, of that ordeal, on the evening of the 13th instant, have been already recorded by us in a recent impression. The main facts, as well as many observations as to matters of fact bearing upon the issue, of great perspicuity and with in the Times of the 19th inst. We are unable to say as much for the account given by a contemporary engineering paper, in which the most preposterous errors both as to facts any basis, are imagined in favour of Mr. Chatwood, which he himself would be the first to disown.

The following are the occurrences as they took place after the day of the 13th inst., so far as we are at present informed of them and feel ourselves at liberty on the preof Wednesday, the 14th inst., we are informed, the committee again assembled at the British testing house, where, as we have already stated, Chatwood's three work-
men (we wish they had all been more completely entitled to
be called "experts"), tore out the entire front of Herbe called "experts"), tore out the entire front of Her-
ring's inner safe or coffer (remaining over night), in four ring's inner sate or coffer (remaiming over night), in four
minutes, and the drawers of Chatwood's safe (fragile bits minutes, and the drawers of Chatwood's safe (fragile bits
of wood) were destroyed by one of the American members of wood) were destroyed by one of the American members
of the committee (as Mr. Herring's workmen could not be of the committee (as Mr. Herring's workmen could not be
obtained for this purpose), in one minute. This completed obtained for this purpose), in one minute. This completed
on both sides the trial by "experts," and we are now in a position to give with exactness the times in which each the two safes was fully broken into
The experts began to operate upon both safes at $2.45 \mathrm{p} . \mathrm{m}$. on the 13 m , an the wood block was taken out of Chatwood's safe at $7.25 \mathrm{pm.m}$. Deducting from both sides forty-five minutes (allowed to the men for rest and refreshment) the time, therefore, occupied in the extraction was 3 h .55 m ., or 235 minutes. As regards Herring's safe, at 7.15 p.m. the thick double front plate of the inner safe or coffer was broken off, and in five minutes after the inside of the coffer was opened to the extent of a horizontal surface of two and-a-quarter inches wide by the
entire length of the coffer. Although the brick of wood could not be got out through this-having been wisel placed by Mr. Herring at the lowest and furthermost part of the coffer-still this opening was amply sufficient to have enabled gold coin or jewels to have been extracted from the interior.
As far as being still proof against burglars, Herring's
safe was thus, at this instant, hors safe was thus, at this instant, hors de combat-that is to say, it had really-though not to the full extent demanded by the letter of the law as fixed for the trial-then been been broken into, and thus had been so in 230 minutes from the moment of the common start, or in five minutes less than in the case of Chatwood's safe.
The entire times employed upon Herring's safe may be recapitulated as follows:-Time up to when the front plates of the coffer were torn off, 225 min.; time consumed after that by the men in hammering (nearly in the dark, and under great disadvantages) at the remainder of the partlyopened coffer front, on the 13th inst., 25 min ; time in which the men completely tore away the remains of the front of the coffer, and took the wood block out, on the morning of the 14 th inst., 4 min .; Total time from starting 254 min . sort on either side, the relative times, therefore, were -Chatwood's safe, 235 min .; Herring's safe, 254 min .
The difference between the two is only nineteen minutes, sothat the advantage in time in favourof Herring, thus taken, is only $\frac{1}{12 \cdot 3}$, or eight per cent. of the entire time consumed upon Chatwood's, or less than eight per cent. $\left(\frac{1}{13 \cdot 39}\right)$, if we take the total time consumed on Herring's safe as the unit for comparison
Were we to instit
Were we to institute estimative deductions which might
be made from this small difference of nineteen be made from this small difference of nineteen minutes in
Herring's favour, based upon impartially fair and unde niable considerations of relative circumstances, we are of opinion that even this small difference would be seriously reduced, and that good grounds could be adduced for its
becoming evanescent, or even passing through zero and becoming evanescent, or even passing through zero
However, we shall not now go into that which can be discussed with greater fairness to both parties after we
shall have been enabled to make public all the facts up to shall have been enabled to make pu
the end of this memorable contest.
So far, however, according to the conditions fixed, and subject to all the "inseparable accidents" to which any such test by experts must be inevitably liable, the time of
being broken into, to the extent exacted by those condibeing broken into, to the extent exacted by those condi-
tions, and small as was the difference, was in favour of Herring.
But the relative goodness of burglar proof safes,
hough-as was well expressed by M. Donliot che chair-though-as was well expressed by M. Douliot che chair-
man-it is undoubtedly a function of the time occupied in breaking into them respectively, does not rest upon that matter alone.
Of that the entire committee before the trial began, expressed their concurrent belief; it therefore became
the more important that these gentlemen should take the more important that these gentlemen should take
into consideration in the fullest and most impartial manner, and weigh with the most scrupulous and anxious care every other circumstance, both of a constructive character as regards the safes themselves,
and of a circumstantial character as affecting the trial by these experts, before arriving at a final conclusion as to "which was the best safe," and the one, therefore, by
the articles of agreement, entitled to the heavy stakes the articles of agreem
deposited on challenge

deposited on challenge.

The articles of agreement left to the committee unlimited latitude in considering and deciding on those points, as will be obvious on re-perasing them. Accordingly, upon the 14th inst., after the conclusion of the operations above described, the committee, before leaving the testing-house, decided upon what further experiments, if any, they required made on either or both of the safes They examined personally the condition of the safes, made out a written list of data as to weights, dimensions, \&c. which they required to be conjointly obtained on the part of both Chatwood and Herring, and to be on the next day handed to each member of the committee, signed by or on the part of each of the parties. They compared, in certain parts, the drawings which had been construction of their safes, and, we understand, found some serious discrepancies, and of a character likely to mislead, between Mr. Herring's drawings and his safe. Upon the part of Mr. Chatwood there were certain omis calculated to drawings, but no discrepancies, nor anything of his outer compound shell were supplied by his illus trative tracings delivered with bis working drawings.
It was proposed in writing by the chairman-who, unfortunately, does not speak or understand Engish-to the into the form of a written memorandum each his own
opinions and judgment upon all that had so far taken place,
and that these opinions, when translated into French, should be placed in his (the chairman's) hands, for his information -such memoranda, or reports of progress, not to be viewed as decisions, but simply as records of the facts as they appeared to each of the committee, with such deductions from these as they each deemed those facts io warrant-with a and precise manner than he found, owing to his want of knowledge of English, he had been able to obtain during the progress of the investigation
This was agreed to by the committee, and upon their separation on the 14th it was understood that each of the four members should separately record his documents should be trailated and sime a through the secretary (Mr. Hoyle) to the chairman the 16th inst., as we are informed, the two English men bers learned that Messrs. Holmes and Pickering, the two American members, had departed from this arrangementthat they had thought proper to make a joint report, and transmitted to Mons. Douliot, the chairman. Messrs. deemed it best to take a like course: they prepared a joint report of progress on that day, had it translated, and
warded it with as little delay as possible to the chairman also Upon the same day (16th inst.) it was settled by the the committee, that it should meet on Monday, the 19th, at 5 p.m., for the purpose of conferring upon those reports, and upon the vews which the chaiman migh himself the best safe, aud who was, therefore, entitled to the stakes. This meeting was accordingly held, all the committee, ports of progress, of Messrs. Holmes and Pickering upon the other were respectively read in English and in writing before the chairman in French, and the chairman was requested now to favour the committee with
his own views, in fact, to prepare a proces verbal, instrument for clearer consideration-which should be
translated into English and laid before the committee at its next meeting, which was fixed for the following meeting of the 19th inst., however, it turned out as we are informed, that not only had Messrs. Holmes and Pickering port, as before stated, but that Mr. Holmes had individually addressed to Mons. Douliot a letter of considerable length and of a most extraordinary character, and departing alto-
gether outside the limits of the proper field of discussion for any member of the committee. It also appeared that two oth progress had been also sent, subsequent to the 14th inst., by
Mes. rs. Holmes and Pickering or by Mr. Holmes, to Mors. Douliot, and that these documents had been transand were at last produced, at the requirement of Messss. and were at last produced, at and Fairle, in the original English. These
Mallet and three documents, other than and in addition to the joint
report, appeared to the English members of the committee they announced at once their doubts as to how far they were warranted in acting further on the committee. They proposed a resolution, in which the chairman, Mons. and recorded the jadgment of the entire committee except to have been forwarded. Some warm discussionissaidtohave followed, and may be supposed, if it be a fact that the when it was adjourned to the evening of that day at $7 \mathrm{p} . \mathrm{m}$. In the interval Messrs. Mallet and Fairlie, as we are infactsincluding the last evening's proceedings, came to theconclusion that even-handed justice was no longer possible, calculated unduly to bias the issue, which they had had occasion previously to remonstrate a arainst, as well as these them, having regard to their own professional and personal reputation.
Messrs. Mallet and Fairlie, therefore, attended the comminutes of the previous meeting were duly entered and signed by the chairman, initialled the originals of the several objectionable documents, and got a resolution
passed that all documents now in the hands of the secretary should be accessible to both Mr. Herring
and Mr. Chatwood. Messrs. Mallet and Fairlie then,
before the chairman's report of progress (and of the before the chairman's report of progress (and of the
nature of which they are still entirely ignorant) was read,
announced their intention to retire, and they read, in the form of a memorandum handed to the secretary, their They at the same time deemed it right to express to Mons. personally and ss chairman Upon this Mons Dontiot him once wrote out and handed in his own resignation as chairman, and the secretary verbally offered his.
Neither the terms of these resignations, nor of those documents, are before us, nor, we believe, have yet been made public. No doubt they must in due time, along with
all public. The characters of those concerned demand this and nothing less than this, and we shall probably be ere long ourselves in a position, not ouly to give the facts but
to comment upon them, and, what is to the mechanician more important, to criticise the safes themselves, which more important, to criticise the
have thus become so prominent.
Meanwhile the committee no longer exists since $7 \cdot 30$ p.m. or thereabouts, on the 20th August instant, and having
been dissolved without a decision, and no power under the been dissolved without a decision, and no power under the articles of agreement of re-appointment existing, the
whole matter, so far as the challenge is concerned, is at an end, and, as we presume, the stakes must be returned to
their respective depositors. We are far from thinking, however, that this challenge trial has been fruitless or un-
productive in a technical sense, of any end. On the contrary, we believe there are abundant evidences upon which to found a solid and sound judgment as to which of the two safes, viz., as constructed by Herring or by
Chatwood, is the better-or the best, in an absolute senseand so far as we are concerned we shall discuss this fully and impartially as soon as we shall have had all the infor mation we require placed at our command.
In the account of the ordeal of the 13th ult., in our last impression, we made one omission which we wish now to
supply. We should have stated that "time" was kept during the trial (as corroborative of the time taken by the respective members of the committee by their own
watches) by Mr. John Walker, of 68 , Cornhill, and watches) by Mr. John Walker,
Regent-street, London, Exhpibition for the cuse of the comom name will be in the recollection of our readers as the gentleman whose safe in Cornhill was broken open in
February, 1865, and about five thousand pounds worth of property carried away; a robbery which has largely though
indirectly contributed both to the improvement of safes and to the increase of trade of the safe makers.

PARIS EXHIBITION-THE VENTILATION OF

 THE MAIN BULLDING.IT is stated on pretty good authority in Paris, and which, that the forced ventilation of the interior zones of the Exhibition building employs a total steam power of about 100 -horse power, by which some 700,000 cubic metres of but whether that unit be delivered in some unit of time, from official or demi-official documents, somewhat obscure It is stated in the catalogne that the interior atmosphere again, there is a good deal of obscurity-as we are unable to decide of how much of the entire internal area of the building, the entire atmospbere will thus be renewed. The including the great zone it cantent possibly building, It cannot even mean the whole of the remaining roofed-in portions of the building; whatever it does mean the ventitested by an extreme case the structure baolly insuffitested
cient.
On

On last week, i.e., the week between Wednesday the 4th and 21st August preseut, there occurred at Paris, three shine. Upon two of the days these were so great as to be oppressive even in the shade, that Americans accustomed to the fierce dry heat of the summer at New York, and to the heat and vapour of New Orleans, complained of it. This state of weather which, even in this exceptional year,
attracted the notice of all both at Paris and London, ended, as we all know, by a thunder storm, which appears to have extended over the entire South of England and North of France with great power, and with diminished energy over a far wider area. Upon those days of extreme heat the
three inner zones of the Exhibition building, viz, those of the objects-belonging to the person-to the house and furniture-and to the liberal arts, \&c., were found to have an atmosphere in a condition highly oppressive and
disabling. Registers which have been kept at the building are stated to prove that up to a short time ago the average difference in temperature between the air outside and that inside those portions of the building did not possible that during those oppressive days this difference was taken up by the fans or blast cylinders at about 85 deg. Fah., and in some cases, probably, nearly 90 deg. Fah., and further heated by friction and compression, and by surfaces of the ventilating apparatus, it will be easily imagined that $85 \mathrm{deg} .+9$ deg. would give a very unbearable temperature in the inner recesses of the immense enclosed area of the building, assuming the stated ought in the preceding statement to make some little allowance for the cooling produced in the current of air
forced in, by its passage through the subterraneous ducts leading from the apparatus at the several points, most of them outside the great zone, but not all so. This cooling for various reasons, however, must be very small indeed,
if anything at all now, for in fact the currents of air rapidly tend to bring the walls of these ducts to their own temperature, and these surfaces are no doubt now at about the same temperature as the air outside, for the mean of ever, of the sickly sense of oppression felt during those almost tropical days in the inner recesses of the building, was not the mere want of fresh air, nor yet the mere high temperature of the air itself, but the pathological effect upon the nervous system of the rays of invisible heat, metal or of glass, with which the building is covered. Why such rays of non-luminous heat should prove so much more nerve-depressing than an equal degree of warmth radiated upon the human body from a source of luminous heat, such as a blazing fire or the sun, we shall not pretend even toing. The fact, however, we do not think admits of dispute, and it is one suggestive of several not unimportant dispute, and it is one suggestive of several not unimportand
deductions as to the construction and the ventilation, and even the illumination, of public buildings
The exterior belt of restaurants around the main building, as is well known, is roofed with corrugated sheet iron. There is a floor and storey aboveseveral of these restaurants,
the ceiling of which in several instances consiets only of this bare surface of iron, fully exposed to the sun's rays this bare surface of iron, fully exposed to
externally for the greater part of the day.
Some of the rooms thus circumstanced (notably one
above Kirkland's restaurant) are perfectly open in front,
freedom and change of air, and there is complete shade
from the sun. In these rooms, however, the oppression and languor produced by sitting for a moderate time, especially with the head uncovered, is very remarkable. A sirgular instance of the same sort of action was stated to us by the workman in the British testing house who has attended there constantly to the trials made of the various forms of cooking apparatus for ships or for domestic or public uses. He mentioned that he had found the obscure heat radiated from the surfaces of a large
circular closed in, sort of hot hearth of considerable size still circular closed in, sort of hot hearth of considerable size still fiercest heat radiated during the same time from the open roasting or other fires also experimented upon. With this man it was a mere fact; he had no theory, nor any pre-

A still more curious example of the same train of circumstances exists in another part of Paris. The two Lyrique a phe Du Châtelet-were, one of them fully, the other partially, heated and ventilated in accordance with the designs of General Morin. In point of ventilation, even in the hottest weather, both are excellent, and one of them absolutely perfect; there is no very perceptible buildice in purity between the air wis of the performance Both theatres are lighted by means of gas jets placed above a translucent and in part coloured ceiling of glass, rendered untransparent by the surface being wrought into very beautiful diaperipatterns-a sort of giganticmuftling, in fact. Notwithstanding the goodness of the ventilation and the Paris the everybody feels sleepy at those theatres after the two firsthoursor soof the performance. The general fact isnot doubtful-we have personally, and more than once experiment or feeble the health the more fully it will become evident, and thus more to others than to ourselves
But what is the cause? We believe it is to be found in the rays of ievisible or obscure heat, which are continually showered down from the great surface of the glass ceiling above it. These observations, though so far having no pre tensions to the rigid exactitude which science demands before she accepts aught as a truth proven, may yet be ings for roofs are very objectionable in any climate, cold or hot. Colonial churches of iron, now so common, must thus due to the invisible rays shed down upon the congregation from the iron roof, bare within, and bare to the sun's rays without.
The lesson seems to be that in every building thus externently constructed, which is to be temporarily or permabuildings or churches-some surface of a light material should be interposed interiorly to the sun-heated iron, to cut off, as far as practicable, those obscure rays of heat a considerable extent; a thin interior surface of boaclin, off from it by a couple of inches, there was also a surface of canvass stretched,
Returning to the ventilation of the Exhibition building that the reports of the French exceutive when at length they shall appear, will comprise full statements of all the final jus as shall permit of a ployed and of their adequacy to the end in view. Meanwhile we may venture to suggest that during the con-
tinuance of the hot and oppressive weather of this next month at Paris, if all the ventilating engines were kept at work all night long the effect would be a considerof the building, as well as a good deal more freshness in the building the day. The volume of air forced into the building, however, is not adequate to the vast space- to the move about in it, and to the unquestionably considerable amount of odorots matter that must be evolved from the countless objects, more or less volatile, that occupy the known, are not devoid of odour. Whenever there is little breeze, in whatsoever direction, the ventilation greatly improved. The construction of the building itself with its radial passages penetrating exterior form, and centre to circumference, does more in such case for the ventilation in an hour than the whole 100 -horse power does in the day.
great central brick tower is placed in the middle garden where the circular building now stands, which is occupie by the standards of weight and measure of all nations,
adequate height, probably not less than $250 f t$, supplied with a powerful furnace to produce drauch placed in a vault beneath the garden, and connected by of the building needing ventiltion would in ment, have proved far more effective than the our judg ment, have proved far more erfective than the system of
forced in ventilation actually adopted. This would have required the separation of the zones thus ventilated from those not requiring any artificial ventilation by means of double doors or curtains across the radial passages.

It would also have demanded a good deal of forethought as to the best positions and the most suitable consthection for the apertures of ingress for the fresh air. Even if
these had been simply distributcd over the roofs, so that the fresh air came in through these-although the air thus the fresh air came in through these- although the air thus
introduced would be at times heated by the sun, we believe ine result would have proved good-provided the volume of indraught and outdraught were abundant. At present of indraught and outdraught were abundant. At present
the volume of fresh air sent in is certainly insufficient The current incoming can scarcely be perceived when standing within a yard or two of the wooden gratings of the fourth or inner zone, and the gratings themselves are
badly constructed-one of the few bits of shabbiness about the building.

HORIZONTAL COMBINED ENGINE AT THE LONDON JUTE WORKS, PONDERS END. the canal basin foundry comipany, glasgow, engineers.

Şwain

DIAGRAMS FROM ENGINES CONSTRUCTED BY THE CANAL BASIN FOUNDRY COMPANY, GLASGOW.

COMPOUND ENGINE AT THE LONDON JUTE WORKS.
In our impression for June 7 we briefly noticed an engine at
that time recently erected at the works of the London Jute Company, Ponders End, by the Canal Basin Foundry Company, Glaspany, Ponders End, by the Canal Basin Foundry Company, Glas.
gow. We now give an illustration of this engine, which presents
many points worthy of notice, at page 173 .
The engine, taken
The engine, taken as a whole, has four colinders, or, more strictly speaking, wesent oriven when compleced, two being found
suffient for the present to drive the mill, although the complete bed-plate has been put down. As the engines are exact duplicates of each other in every respect it will suffice to speak of a single pair of cylinders here.
Each engine consists, then, of a high and low-pressure cylinder; the diameter of the former is 24 in ., of the latter 36 in ,, the stroke
of both being 5 ft . The cylinders, throttle-valve chest, and jackets of both being 5 ft . The cylinders, throttle-valve chest, and jackets,
are cast in one piece, and from personal inspection, we can proare case th one piece, and from personal inspection, we can pro-
nounce them a thoroughly good job. The cylinder covers are also jacketted, all the spaces being supplied with steam direct from the
boiler by a distinct pipe. There is but one connecting ro boiler by a distinct pipe. There is but one connecting rod for each pair of pistons, widely forked at the tail so as to grasp the cross-
head as near the rcds as possible, in order to avoid the chance of side strain. The valve chests are arranged on the upper sides of the eylinders, and the valves driven by a single eccentric through the medium of a rocking shaft, as will be seen at a a glance from our engraving. Condensation principally takes place in a horizontal enlargement of the waste pipe on its way to the air pump, the in-
jection water entering just at the elbow and flowing with the uncondensed vapour to the condenser, which is not immersed in tank. The air pump is actuated by a rocking shaft beneath the floor of the engine room; an arm from this shaft also drives the
feed pump. The remaining details will be easily gathered from feed pump. The remaining details will be easily gathered from
our engraving. We may state that the fly-wheel drives the mill our engraving. We may state that the fly-wheel drives the mill
throukh the medium of a spur wheel on a shaft lying about the same level as the crank shati outside the wall of the engine room,
through an aperture in which the spur wheel comes. We have through an aperture in. which the spur wheel comes. We have
omitted the wheel in our engraving from want of space. The engine runs at a speed of 400 ft . per minute.
At the first glance it might be assume
arrangement of the cylinders, an injurious twistin, owing to the be brought on the crossheads, but this is not the case Steam large cylinder byinder exhausts directly into the valve-box of the pressure in the small cylinder is much higher than in the large cylinder, it must be borne in mind, first, that a back pressure equal
to the positive presure to the positive pressure on the large piston has to be deducted from
the strain on the small piston end of the crosshead, while the larger area of the low-pressure piston tends still further to bring about an equality. If steam is cut off at about one-third of the stroke of the high-pressure piston the strain is about the same at
each end of the crosshead. It is quite certain that no evidence of each end of the crosshead. It is guite certain that no evidence of twisting strain is perceptible while the engine is in motion, and
engines similar in every respect have been running for five engines similar in every respect have been running for five years
without requiring one farthing of outlay for repair. It is difficult to see by what other arrangement of compound engine as much power can be provided in a limited space and at a moderate cost,
and a glance will suffice to prove that the design is eminently simple and free from complexity of valve gear, $\$ 0$.
It may be urged possibly that there is a certain loss of efficiency the other end of the large cylinder, but it must not be forgotten that a somewhat similar loss must take place in all cases when a simple silide valve is used, and therefore the low-pressure cylinder is really little worse off than it would be were it acting as a single cylinder fed straight from the boiler; the steam chest may indeed be regarded as a reservoir between the two cylinders, and the
influence of such a reservoix is not necessarily prejadicial. In order that our readers may judge for themselves of what goes on within the cylinders, we append a series of diagrams kindly placed at our service by Mr. Turnbull, of the Canal Basin Foundry Company, from whose designs the engines have been built. Four of
these
diagrams have been taken from the engine we illustrate these diagrams have been taken from the engine we illustrate.
The cousumption of coal is about $2 \cdot 85 \mathrm{lb}$. per indicated horse power per hour. As will be seen, the engine is not fully loaded, the lowpressure engine drawing air at all parts of the stroke through the pet-cocks.

The remaining diagrams are taken from other engines, single and The remaining diagrams are taken from other engines, single and
combined, by the same firm. They have all been made during regular work, and leave little to be desired.
We have so recently
Wound have so recently expressed our views on the subject of compound engines, and expliained under what circumstancos they posfurther on the subject here. We may state that in Glasgow the combined engine is rapidly gaining in favour, and is regarded by many manufacturers as embodying the only principle on which expansion can be properly carried out in engines intended to drive machinery requiring to be put in motion with a perfectly regular velocity. We shall only add, in conclusion, that although the name of the
Canal Basin Foundry Company may not be familiar to English Canal Basin Foundry Company may not be familiar to English
ears, the firm have been engaged for over twenty years in the manufacture of steam engines, and have during that time turned out a greater number of compound engines than perhaps aul the other
makers of stationary encines in Scotland put to makers of stationary engines in Scotland put together. If the principle were objectionable it is to be assumed that they would
have discovered the fact long since. The circumstance that the manufacture of compound engines is seldom or never given up in favour of single-cylinder engines by long-established houses is very favour of single-cylinder engines by long-estabished houses is very
excellent testimony to the value of the principle in a commercial sense.

The United Sthtes Governigest Surver.-A correspondent has forwarded us the following extract from a letter written by a gentleman who occupies the position of one of the geologists on
the survey, and which, coming from so the survey, and which, coming from so good an authority, will
doubtless be of interest to our readers. The letter bears the date of 5th June, 1867, and is headed "San Francisco":-"And now let me tell you how I came to be here. The United States Government have lately authorised a geological survey to be made across the continent, or rather the survey of a section across so much of
the country as has not yet been scientifically explored the country as has not yet been scientifically explored. This
consists of a belt of land on the 40th parallel of north latitude extending from the 105th to the 120th meridian; or, in other words, from the western boundary of Nebraska to the eastern boundary of California. Through or near this belt will pass the Central Pacific Railroad, and the object of the expedition is to gather in advance as much information as possible respecting the
structure of the country, the mineral resources, the agricultural capacity, and all the other physical characteristics of the region. In its course the iron road will cut through the Rocky Mountains, ncluding the eastern and western slopes, and will stretch west ward over the great interior basin to the eastern slopes of the Sierra
Mountains. If you have read Dixon's " New Mountains. If you have read Dixon's "New America" you will have some idea of the eastern portion, as our course takes us
through Salt Lake and the Mormon country. The survey is under the command of Mr. Clarence King, who has been connected during the last few years with the State Geological Survey of California, under Professor J. D. Whitney. The experience that he has acquired as a mountain explorer admirably fits him for the
leadership of this expedition. He has travelled extensively over teaderssip of this expedition. He has travelleed extensively over
the great mountain ranges of the West, has ascended and measured some of the loftiest peaks (he it was who first sealed and named Mount Lyell and Mount Tyndall), and is thoroughly inured to the hardships of frontier life. There are nine of us, assistants, under his direction. His friend and associate of the Californian survey, Mr. James T. Gardner, who has lately been engaged with
King in surveying and mapping the famous Yo Semite Valley, and the adjacent mountain region, is the first assistant in topography and Professor James D. Hague, of the Massachusetts Institute of Technology, likewise an experienced traveller, is the first assistant in geology. In all there are three geologists, three topographers, zoologst, a botanist, and a photographer. In addition to these tary escort of twenty mounted Colifornians, under non- a mis sioned officers, which complete the personnel of our party. It is expected that the work will occupy three years. As, however, the line of exploration extends from Pyramid Lake, near Virginia city, on the eastern slope of the Sierra Nevada, to Denver city,
on the eastern side of the Rocky Mountains, a distance of nearly n the eastern side of the Rocky Mountains, a distance of nearl
1000 miles of, to a great extent, undeveloped country, occupied in many parts by hostile Indians, we shall not be able to do a great deal of minute geological work in that time. The grent desert
basin of Nevada and Utah, and the various parallel ridges and
valleys traversing it, including the lofty ridge known as the
Eastern and Western Humboldt River mountains, and the Wah satch mountains, to the east of Great Salt Lake, will be included in our observations. Wo start in a few days, and hope to reach For Riley by the beginning of November, and then to spend the winter, which is too severe for field work, in the neighbourhood of
Virginia city. We hope to make Salt Lake city by the following wirginia. Atity. We hope to make Salt Lake city by the following subsist on army rations, everything is to be transported in army wagons; in fact, our outfit is the same as that of army officers. We carry a few delicacies with us, including a good chest of tea." Naval Aprointwiexts.-George Metcalf, Robert Crosthwaite, and W. Kelly, engineers, to the Bristol; W. Sides, engineer, to
the Indus, for Skipjack; George Fabian, first-class assistant enthe Indus, for Skipjack; George Fabian, first-class assistant en
gineer, to the Fox; W. G. Littlejohn, first-class engineer, to the gineer, to the Fox; W. G. Littlejobn, first-class engineer, to the
Dee ; and Joseph Monk, second-class assistant engineer, to the Bristol.
South Kressingcon Musevi, - Visitors during the week ending August 2 tht, 1867 On Monday, Tuesday, and Saturday, free,
from 10 a.m. to io p.m. 9520 , on Wednesday, Thursday and from 10 a.m. to 10 p.m., 9520 ; on Wednesday, Thursday, and
 of corresponding week in former years, 14,072 . Total from the opening of the museum, $6,919,662$.
The Waterwitch. - The Waterwitoh made a speed trial over the measured mile in Stokes Bay, near Portsmouth, on Wednesday as a supplementary and corrective trial to the series which had
been already conducted there the particulars of which we have been already conducted there, the particulars of which we have
published. The draught of water of the ship was-forward, 10 ft . 8 in.; aft. 1 fft . 2 in . Her mean draught was 10 ft . 11 in . The wind was at a force of from 2 to 3 from west to west-south-west; the sea was, therefore, undisturbed, and the best possible results were got out of the ship under her conditions of trial Six runs were made with full-boiler power, and four with half-boiler power, the
figures obtained being as follows:- At full-boiler power the ship made in first run $9 \cdot 113$ knots, and $41-16$ revolutions of engines minute; in second run, $9 \cdot 137$ knots, and 41.72 revolutions; in third run, $9 \cdot 524$ knots, and 41.90 revolutions; in fourth run, 8.738 knots and 41.36 revelutions, in fifth run, 9.954 knots, and 42.76 ,
revolutions; in sixth run 8.108 knots, and 41.62 revolutions revolutions; in sixth run, 8.108 knots , and $41 \cdot 62$ revolutions, The
mean speed of ship was 9.219 knots , the mean of the revolution mean speed of ship was $9-219 \mathrm{knots}$, the mean of the revolutions
of engines, 4175 ; the mean steam pressure, 291 b .; and the mean vacuum, 25.7 inches. At half-boiler power she made in first rum
 in fourth run, 4950 knots, with a mean of 29 revolutions in as minute.
A NEw Rifle Musker, the invention of Messrs. Carter and Edwards, has undergone an official trial in the Woolwich Marsh, in competition with the Snider Enfield rifle, with the following results:-The Snider rifle was fired by Lieut. Lecky, assistantinstructor of musketry to the Royal Marine division at Woolwich;
the time two the time two minutes, when sixteen rounds were fired, fourteen
hits were made, and thirty-four points were obtained. hits were made, and thirty-four points were obtained. Carter and twenty-four hits, and fifty-four points. The object was a thirdclass target with a Wimbledon bull's-eye. The superiority of the Carter and Edwards' rifle over the Snider in rapidity of fire appears to be fully established, as the riffe, which is on the bolt system, cocks itself in the withdrawal of the cartridge. The lock is entirely
concealed, and the weapon is fired with a needle through the concealed, and the weapon is fired with a needie through the
bolt. Another advantage, equally important, and also an entire novelty in small arms is-that a line or party of skirmishers, in the event of their being taken prisoners, or surrounded by the enemy at a disadvantage, can, with a turn of a sorew, take out the bol and cast it away, leaving the arm as totally useless as the Arm strong field-gun without its vent-pieee. For. simplicity of con
struction it surpasses the Snider, as there are fewer springs. fact, the only springs it contains are the main-spring of the lock and the rear spring. The inventors, it is stated, are fitting up a spacious manufactory in Birmingham to construct arms on their principle, in order to fulfil a large contract which they have en tered into with a foreign Government. They were disqualified
from contending at the late competition at Wool sent in their arms in time, according to the regulations. The new rifles above named are adapted equally with the Snider to use the Boxer ammunition, Enfield bore.-Times.

RAILWAY MATTERS.

THE Great Northern has adopted the plan of stopping further The London, Chatham, and Dover Company are now taking The chairman of the South Devon line opposes any further atension of that railway
A Rumway brake which can be applied to the whole train The Midland subsidy for the
ce., will cease in the year 1870 . THE subject of through communication from Caithness to the The net receipts from the Midland Company for the use of the The Newquay and Cornwall Junction line is completed to vithin two miles of the Burngullow station on the Cornwall KailThe South Devon line it is expected will benefit targely by the
decision of the Government to land the West Indian Nails at Plymouth.
AN accident happened on the Midland Railway, near Masborough, strayed on the line.
Mr. Thomas Arter, of Ludlow and Kington, Herefordshire,
has been fined
£20 for sending lucifer matches from Ludlow to has been fined $£ 20$ for sending lucifer
Brecon by rail, contrary to the bye-laws.
There, are three distinct belts of mauvaises odeurs, in passing
from London Bridge Station, those of (1) defunct horses, (2) of anyards, (3) of sewage water
Twelve years ago the Brighton Railway Company had a capital
of eight millions; now the capital is twelve millions, but the income has remained about stationary through all.
THe Spilsby and Firsby line is Papproaching completion. The
ails are laid along the whole line, and there is reason to believe rails are laid along the whole line, and there is reason
The special train in which the Emperor Napoleon went with his
in suite from Paris to Salzburg is described as exceeding in comfort The engineer of the Cockermouth, Keswick, and Penwick
Company reports that the permanent way and other works have Company reports that the permanent way and other works have
been well maintained during the past half-year, and are in good rder throughout.
The half-yearly meeting of the Dublin and Drogheda Railway Company was held on the 22 nd inst., when the report showed a prosperous condition of th
43 per cent. was declared.
On Monday the first engine passed over the Mont Cenis Summit Railway. The trip was most successful, and it is expected the the French and Italian systems.
A Loursiana paper asscrts that on the Opelousas Railroad, the whistle to clear the track of alligators, as the track is the only thing above water for them to rest on for many miles beyond
Tigerville. The train has run over several alligators since the Tigerville. The
The report of the Blythe and Tyne directors states that during the progress of the bill to carry out certain extensions through
Parliament a conference took place between the wayleave proprietors and the directors, when an arrangement was come to for continuing th
The Waterford and Limerick Company have ceased to work Kilkenny Junction Extension is now open to Maryborou connection therewith, and this system now extends over about fifty
miles. The Kilkenny Company now use the company's new staion at Waterford
THE Newry and Armagh directors are unable to report any
improvement in the relations with the Ulster Company. The improvement in the relations with the Ulster Company. The afford just cause for dissatisfaction, and goods for Newry coming
from the Ulster line are still stopped and rebooked at the junctions of Armagh and Portadown.
A feeling of disappointment has been occasioned among
Belgian firms by the results of the adjudication for rails required or the Dutch State railways; it had been hoped that contracts for these two lots of 5000 tons would have been secured for Belgian establishments, and
A yourt named David Williamson, aged fourteen, was comport on Monday, on a charge of placing ten chairs on the rails pear the Mersey Bridge, Cheadle Bulkeley, on the Stockport and Timperley Raifway, with intent to upset the express train from passenger carriages.
On the Cornwall Railway fish traffic for the last six months shows an increase of 1200 tons, and there is £1000 extra in the
parcels account. The brocoli and vegetable traffic shows a deficiency of 1672 tons, owing to the extremely severe season. China ciency of 1672 tons, owing to the extremely severe season. China
clay is still an increasing traffic. In the goods there is an increase of about 1000 tons, in the working expenses there is a decrease
of $£ 4581$. As to the line account, the engineer cannot hold out ny hope of lessening the expenses.
THE South Eastern directors, in common with the directors of the Brighton Company, are taking the necessary steps to obtain as to the powers conferred by the agreement between the two companies. In the meantime it is proposed to anticipate, so far as will tend not only to terminate all unnecessary competition between the companies, but secure as soon as possible those
facilities in London and at various other points so long and facilities in London and at vari
urgently demanded by the public.
The works of the Thull Ghat and Bhore Ghat inclines on the
 by the failure of a viaduct, the reconstruction of which will
involve grent delay and expense. The works of the Bhore Ghit were no less than seven years and a quarter in hand, and at one period (March, 1861) more than 42,000 men were employed upon
them. The work which has now given way, and has rendered it mpossible for the present to conduct traffic with full vigour upon arches, 143 ft . from the ground. It is the greatest work upon the
incline. Two new lines of railway were opened last week in Wales. The first was the Manchester and Minmarthen, and which, by completing a link in the western line of railways running through the principality, opened up a length of the line is $41 \frac{1}{2}$ miles. The second line was the coast delayed in consequence of financial difficulties. Hitherto passeners from the Midland district travelling to Towyn, Barmouth, and
other towns on the coast'section, had been obliged to change at
Twyslas and cross the Dovey by steamer. The opening of the
new line will do away with this inconvenience, and afford an

NOTES AND MEMORANDA.

Dinsonns to the value of $3,250,000$ dols. are annually sent abroad Pennsylvania furnishes seventy-three and three quarters per cent. of all the coal produced in the United States. Californla now exports 10,000 tons of copper annually, an
amount five times as large as the whole production of the United States ten years ago.
THE inhabitants of Quito manufactured magnificent mirrors from obsidian, and those of the Azores and Ascension islands, and Guiana,
used splinters of obsidian as points for their lances, razors, \&c. HarNecrs of obsidian as points for their lances, razors, \&c. Harnecher proposes the use of chloride of mercury for the
removal of silver stains from cloth, as a substitute for cyanide of potassium. It destroys the dark spots without injuring the colour the cloth
Fremy exhibited to the Academy on 22nd April, two ingots of decimeter high and a few centimeters in diameter, and weighed 500 grammes. They were valued at 20,000
THE expansion of the rails of a railroad 500 miles long amounts in a hot summer's day to nearly a quarter of a mile from the
point of the extreme contraction in winter. Of course this ex point of the extreme contraction
pansion is all taken up by the joint
The Medical Journal notices with favour the introduction of new tonic wherein Englan.
vice in a medicinal way one grain of quinine in an imperial pint of ale, the additional
Professor Whitney reports fifteen localities in California where diamonds have been found in the course of washings for
gold, but in his view it would not pay to wash the gravel beds of gold, but in his
those places solply for the precious stones, for diamond washings
are not protitable in are not p
labour.
Babon Humboldt says that Cortez mentioned, in his letter to he Emperor Charles V., having seen razors of obsidian at Teno-
hittan; and the above naturalist likewise discovered on the Sierra de las Nabajaz, in New Spain, the old shaft that was used for raising the rough obsidian, with relics of the tools and half-finished A German chemist has been conducting some delicate experi
ments with cobalt and nickel to determine their respective atomic weights. The mean of five experiments with cobalt gave the number $29 \cdot 496$, The mean of four with nickel, the number
$29 \cdot 527$. The atomic weights may therefore be taken as identical,
IT is with much satisfaction that we see it announced that rofessor Augustus Kekulé of Ghent has been offered the director-
ship of the magnificent laboratory now nearly completed at Bonn. practically, for the establishment of the present views in organio pramistry.
Λ curious fact in relation to the metal lead has been observed by
M. H. Neberland, a German founder. When a small quantity of lead is mixed with iron in a state of fusion, the lead rises to the not appear to be solid, but simply little vesicles. The cause of this not appear to be soid, but simply litte vesicples. To
Iv her mercantile tonnage Great Britain leads the world, with 7,000,000 tons. Germany far exceeds France on this score, being
third on the list. In the year 1860 the United States had over taken England, and stood as the first commercial power in the world. The four years of war sadly reduced her merchant
and now she ranks second, with $5,000,000$ registered tonnage. MI. Kletzinski takes equal weights of sulphate of zinc, sulphate
of magnesia, and sal ammoniac, mixed together in a mortar. The addition of three times the weight of ammonia alum produces a pasty mass, which is to be carefully dried. To make like fabrics
indestructible by fire he uses one part of the above mixture with indestructible by fire he uses one part of the above mixture with
two parts of starch. This compound is much cheaper than tungstate of soda
In the process of fermentation air bubbles are formed in wines. or a long time scientific men believed these bubbles to be cells of
vegetable nature, but their true character being discovered, the vegetable nature, but their true character being discovered, the
owner of a French vineyard, by exposing his liquid for two hours, owner of a French vineyard, by exposing his liquid for two hours,
to the action of a vacuum, has succeeded in removing them. The
same result is secured by a treatment with heat, but this latter same result is secured by a treatment with heat, but this latter
system is superior in many respects, and above all, is much more system is su
economical.

Nrarly all photographic varnishes reduce the intensity of the thin solution of gum arabic is applied to the negative after fixing and before drying, the varnish will not affect the intensity. This is a very simple and useful remedy. Mr. Wenderoth also states that he has long practised the covering of photographic paper prints
upon both sides with collodion varnish, and finds it a complete pre upon both sides with collodion varnish, and finds it a complete pre-
servative of the picture. This method has been claimed by Mr servative of
Blanchard.
IT has been asserted that the dollar mark δ is a contraction for U.S. It has, however, generally been supposed to stand for the
figure 8, and to mean eight reals, which was the Spanish dollar
from which the American dollar originated. The two parallel lines were drawn across the " 8 " to distinguish it from the ordinary
numeral. There is another origin sometimes given to this design
which refers numeral. There is another origin sometimes given to this design
which refers to the old pillar dollar. There were on that coin two blance to this device.
Iv the Andes-Rocky-mountain chain, extending entirely through both continents, there are no less than fifty active volcanoes, the
most interesting being located in South America. Those in the aeighbourhood of Quito are remarkable for vomiting forth enormous quantities of water and muddy substances, which fertilise subterraneous noise of Cotopaxi extends to the around them. The of 500 miles. The reason why melted lava is not thrown out is supposed to be the vast depth at which it lies. It frequently
throws out filth from the crater, which is 2500 or 2600 fathoms above the
As an instance of early advertising we find that of the
Civicus Mercurius, or London Intelligencer. In the number
dated August 11th, 1643 , the fourth part of Prynne's work
on the Sovereign Power of Parliaments is advertised. In
the number dated October 23rd, 1643, is an advertise-
ment of Pyrnne's work, entitled "The Doom of Cowardice
and Treachery." This old newsaper, Merourius Civicus,
is not only remarkable as containing the earliest instances
of newspaper advertisements, but as being the earliest illustrated
newspaper, each number containing a woodecut portrait of the
heroes of the day, when the Civil Wars wore going on throughout
the kingdom, in the troublous times of King Charles I.
THE source and exact length of the Ottawa river, the second
largest river in the dominion of Canada, has recently been deter-
mined by a party of explorers sent out by Government in last
March. The party went up the Du Moine to Gros Lake, which they
explored, and by Governmental instruction re-christened Victoria
Lake. Thence up the "Grand Prince of Waters," until it over-
lapped the head waters of the St. Maurice. Pushing on further in
a little south-easterly direction they found themselves fifty miles
distant from the head waters of the Saguenay. Making friends
with the Indians, the party proceeded in safety to its destination,
discovering the length of the Ottawa to be 1000 miles. The land
on these upper reaches is of the best quality, but the climate is cold.
The explorers reached civilisaticn after spending four months and a
half in the wilderness,

MISCELLANEA
The English watchmakers are alarmed at the progress of watch Br the Aet just passed mas
feet equality before the law.
IT is calculated that Pennsylvania contains coal enough to supply $20,000,000$ tons annually for the rest 650 yearis
The recovery of the Zuyder Zee is seriously looked forward to,
and this would throw all former undertakings of the kind into the shade.
THE position of Belgian metallurgy is not considered to have
improved old orders are being worked up without being replaced by new ones, A matter of some interest to the Belgian iron trade is the
intended construction of 129 miles of "vicinal," or cheap local railways in Brabant.
It is stated that a Franco-American Company is in course of
formation which contemplates the laying of a submarine cable from Ushant to Boston.
A Mechanican of Boston, U.S., has constructed a thermo-elec
tric machine, comprising cylinders filled with coal, which produces a continuous electric light.
Mr. Robert Ball, assistant-astronomer at Lord Rosse's, Parsonstown, has been appointed Professor of Applied Mathematics in
The French metallurgical groups complain of depression, as
they are suffering not only from external competition but are also they are suffering not only from external
contending a good deal against each other.
Hanhlem-meers took thirteen years to drain, and the work was completed in 1852 , and cost neary a milion stes
lay has been recouped by a sale of 42,000 acres.
A GREAT trade has lately sprung up in Skibbereen in Carrageen
moss, and consequently the greatest activity prevails along the moss, and consequently the greatest activity
coast among the parties who save this article.
The organised association of trades at Sheffield repudiate the resolution of the saw grinders, and decline any interco
Mr. Thurlow compares the Netherlands to a copyhold property,
with Neptune as lord of the manor, whose fines amount to a mil lion sterling per annum for repairs and superintendence.
THE great Creusot works are more and more monopolising order in the south and east of France-a state of affairs which, of
course, renders the position of secondary establishments a difficult
The Telegraph Construction and Maintenance Company have sent out the wire which is about to be laid from Placentia, in New-
foundland, to the island of St. Pierre; the length of this wire is 320 miles
On Thursday last 2434 tons of copper ore were sold at Trure
for $£ 14,90312 \mathrm{~s}$. The standard advanced $£ 210 \mathrm{~s}$. The advance for $£ 14,90312 \mathrm{~s}$. The standard advanced $£ 210 \mathrm{~s}$. The advance
has tended somewhat to relieve the gloomy feeling prevalent in the county.
Some quantity of Belgian iron has been forwarded of late to iron to Bele, notwithetanding the heavy transport expenses which have to be sustained
In consequence of the depression which prevails in the trade of
Belfast the fle Belfast the flax spinners have resolved to adopt a system of short
time (forty hours weekly) after the month of September, instead of fifty-six hours, as heretofore.
The great ironworks at Blaenau in the South Wales district are stopped, and 9000 persons are said to be thus thrown out of em-
ploy. Many are leaving the place, and the relieving officer is inun dated with applications for relief.
ONE of the granite columns which are hereafter to ornament the been delivered at the works, and two more are expected shortly They are splendid specimens of granite work
The grand prize of £1200 has been awarded by the Emperor of C.E., and engineer-in-chief to the European Commission of th Danube, for his plans for improvements of the harbour of Odessa A transport service organised from Port Said by the Suez
Canal Company appears to have acquired a certain importance The delivery of the necessary plant (tugs, sloops, \&c.) is completed, and the receipts acqu
this year amounted to
"M. DE Greyse" the Erfurth Gazette states, " has invented a new rife which throws grenades or explosive bullets, and which system of the needle gun, and sends the missiles to a great dis
A circular has been issued by the Hon. Robert Grimston, th chairman of the Electric and International Telegraph Company in reference to the idea which has occasionally been discussed fo
a transfer of the electric telegraphis in the United Kingdom to the a transfer of the electric telegrapas in the may be placed under
overnment, so that the whole system may
the management of the Post-office. Such a transfer Mr. Gibson

Mr. B. Samuelson, M.P., who is engaged in the iron and engi neering business, and has resided some years on the Continent, about to visit France, Belgium, Germany, and Switzerland, with
view to obtaining accurate information as to their industrial position, and especially to their recent manufacturing progress, and the state of labour and instruction among them.
The Liverpool Crown Preserved Coal Company have declared ness and at of of of per cent. per annum, although the dearduction, and lessened the extent of their manufacture. The company are now putting down improved machinery, which they alluded to.
The magnificent new Millwall Docks have now so nearly ap
proached completion that it is expected they will be ready for th pletion by the end of the after for the reception of vessels. The total area of the land pu chased by the Millwall Dock Company is 204 acres; 52 acres will
be the area of the water in the docks, so that 152 will be available be the area of the water in t
for wharves and warehouses.
The Government received tenders on Thursday for steamers fo the Abyssinian expedition, and have ordered sixteen for survey i
England. It is supposed a much larger number will be required Some were offered at twenty-four shillings per ton per month. Th demand for coal on account of these steamers going out has caused
a considerable rise in the rates of freight, particularly for the Cap a considerabay ; ninety-five shillings per ton is freely offered for
and Bombal
steamers to carry coal to the Cape, and for cargoes afloat for Bombay
THe fourth pier on the Middlesex side of the new Blackfria Bridge is giving great trouble. The caissons for this pier have al been placed and weighted, and ring after ring added as they reached the surface of the water, yet still they continue to go down, al
though they are already far below their contract level. For more
than six months has the progress of the works been delayed by than six months has the progress of the works been delayed by
this obstinate pier, and nearly $\ell 12,000$ additional expense has been incurred. This sinking goes on in such an uncertain and erratic manner as cleariy shows the rotten and unsafe nature of the sol movable, or only sink an inch or so, while very recently they went
down thirteen inches in down thirteen inches in a single night.

the express tengine oonstruoted at at C C Creesot by Mesessions. Schneidider and

 Creasot Works to be found in our number of the 1 st Februarg of this
 We now illustrate above a locomotive which if it were only on

 Tuxurie jast at rese
The home trade in
The home trade in locomotives or in anything else is, however, ,t at
retain it we shall have very small profts to divide and very little to be
proud of. To To tatin the targe share of foreign trade which the national energy and talent deeserve, there must be berater national unanimity, and,
as me have urged athound t times, a hisher sacale of national cuiture,

 sideration of the many questions which daily, rortice involves, or orne
tine
inter rate
int

results- if they do reach them-which a more educated thinker would
have reached by a much shorter road It may be iuposaible to beat us in our oun special machines on our own
ppecill ground, but if
we beome pi-hended
fight
with one another
 out ourselves, and teach our children how to think it out better than even

 tryanging. Numbers of good Englioh workmen hato and degpise the
trymy wioc is exerised over their weaker bretren by men who simply hive on them, but their numbers are alko insighififant as compareal
withthe general bod A national movement alone in support of national

diverging into generalities whilst describing a aood engine,
well deeigned in
England, and well executed in
Eranco. Our engraving will sulficiently oxhibit its general characteristics to whore or our readers who bavo not seen this olass of locomotive
working on the Great Essturn line. Tho plans and specilications

 mounted on auxiliary indian-rubber spring ens. The and tender are is for express work, the mixed ensines incladed in the contrant are

 base, 15ft.; distance from centre to centre of cylinders, bitt; thick-

ABBEY MILLS PUMPING STATION - METROPOLITAN MAIN DRAINAGE, NORTHERN OUT FALL.

No. I.

WE feel much pleasure in laying before our'readers a description of the great pumping station of the metropolitan main drainage
works at Abbey Mills now in course of erection, prepared from works at Abbey ynils now in course of erection, prepared from
drawings and particulars courteously placed at our disposal by Mr. Bazalgette. These works are so important that it is impossible to place all the engravings necessary to make their nature and construction clear before our readers in a single number of The Evanser, We propose, however, to supply here some
detailed particulars of the engines and pumps, although we are detained particulars of the engines and pumps, although we are unable to publish all the drawings required to illustrate this
description at the same time. This will not, we think, be pro ductive of any inconvenience, as the description once mastered the drawings will explain themselves afterwards. If any points are left in doubt it will be easy to turn back to this number. In future impressions we also propose to illustrate and describe the buildings within which the machinery will be erected.
We need hardly state that all the drainage of the metropolis under the new system partly in operation requires to be lifted by
pumping in order that it may find its way into the river engines at Crossness and Deptford-and, indeed, the details of the entire scheme - have already been fully described in our colomns.*
The pumping station now under consideration constitutes the important work to be carried out in connection with the undertaking, and the dimensions of the machinery, not less than the work it will have to perform, entitles it to the fullest consideration from engineers-if for no other reason, as a precedent for fature undertakings, and as a guide to the most approved means
of carrying out great pumping operations in connection with of carrying out g
drainage schemes.
As will be seen from the accompanying map the station will be situated in a piece of ground, the property of the MeciroCreek, in the parish of Westham, in Essex. From this Abey cor beng raised about 36ft. by the pumps, the sewage will be
conveyd by three parallel lines of sewers to Barking Creek. At
a little distance beyond the a Litle distance beyond the station the three lines of sewers are Marsh-lane and the North Woolvich Rgilway, and so finally to Barking Creek, where it will be received in a reservoir 91 acres in
area and $16 \mathrm{~S}_{\mathrm{f}} \mathrm{t}$. deep, in which the sewage will be stored about eleven hours each tide
especially in the construction of the pumps, which will be of the double-acting piston class, while those at Crossness are of the plunger type. It will consist of eight pumping engines, , welve
boilers, and sixteen sewage pumps. One of the engines we ilus. boilers, and sixteen sewage pumps. One of the engines we illus-
trate at page 180 It will be seen from the ground plan of the pumping floor at page 176 that the engine-house will be in the form tha cross, two engines being looated in each arm side by side,
the cylinders beeing all disposed centrally, with the large air vessel on the mains within the group. In this engraving are given also
sectional details of the sewage pumps, \&e., so clear as sectional details of the sewage pumps, \&c., so clear as to require
little descrition. densing beam engines, made according to the double-acting construction and design, and will be perfectly balanced when in and out of action, and finished dead bright in all parts usually so
finished by the best makers of first-class waterworks finished by the best makers of first-class waterworks engines.
The cylinders will each be 54 in. diameter and 9 9t. stroke, with steam cases, valves, steam chests, pipes, \&c., effectually covered
with double-felt clothing, with intermediate coverings, each painted in two coats of white lead and oil, column nowlets, covers and false covers, raised bottoms, turned dards, shafts, rods, levers, and handles, and dooble-beat brass valves, three-pin steel piston rods, metallic spring pistons of the most improved construction with brass pins, expansion joints, bright valve
bonnets, case-hardened nuts, waste cocks and waste pipes to carry tho condensed water from the oylinders and easily accessible from the engine-house floor, and all other appendages complete. The symmetrical with each other. The steam will enter the nozzles
from the and have brass-faced slide valves to operate both as stop valves and as regulating valves, worked by means of a bright vertical shaft and a pair of spur wheels to be put in motion by hand from
the engine-house floor. There will be two double-beat equal to at least 80 circular inches through every part, and two double-beat exhaust valves of clear part. All the passages within the nozzle to the condenser along which the steam will flow will have clear areas of not less than
180 circular inches through every part, and all abrupt angles will be rounded off in the castings.
bottom flanges each 88 in ection in the centre, having top and in thickness. The plummer blocks will be supported by a cast iron moulded entablature and arches and four cast iron moulded columns placed on and bolted to a cast iron girder, and will be
37 fit .6 d in. long between the extreme centres. All the gudgeons will be of wrought iron, case-hardened in the working parts, or of through the bosses in the beams for that purpose, so placed as to

- See Time Enainger for Jant bth and 12tb, 1866 .
divide the yibrations upon the principal centre lines, according to
the following leading dimensions, namely-Distance from centre of beam to thie centre line of cylinders, 188 t . Gin.; ditto, to centro line of inner end sewage pumps, 9 ft . 3in; ditto, to centre line of
cranks, 18 ft Gin.; ditto, to centre line of outer end sewage pumps cranks,
9 fit.
in.
The air pumps and condensers will be of 27 in . and 30 in . diameter, and fitted with hot wells, lower blow valves, and sluice valves and with wasto pipes, and will havo brass foot valves, brass bucket gratings, brass dolivery valves, and brass facings to each and also improved hemp-packed buckets, together with proper brass injection cocks and cast iron imjection pilars, with evers
rods, handles, and indexes and cold water cisterns will be turned down into the reservoi under the engine-room floor. The cold water 20 in. diameter and 27 in. stroke, and bo itted with common buckets and clacks. Theso pumps will each draw from a vacuum
vessel 2 ft . in diameter and 7 7t. 6 in . high, to which an 18in. suction pipe to reservoir undor enginc-room floor, with hanging valves and The feed pumps will each have a cast iron plunger of 7in. diameter and 27in. stroke, with glands, stuffing-boxes, and brass valves, and
 pipe, enarging a second air ver its junction with the corresponding deliver into a pipe 12 in . in diameter, carried round the will in the contre of the engine-house, from which the feed-water will be conveyed through a $16 \mathrm{in}$. . pipe to a $12 \mathrm{in}$. . pipe, branching right and
left to the two sets or ranges of boilers, and returned to and along the front of the boilers; that portion, however, in front of the end of each range of boilers. From the last-mentioned pipe wil descend at and in front of overy alternite biler a 4in. pipe with
a 3 in. branch right and left to each boiler.
These pipes furnished with valves at the several junctions to enablo communication to be mado with or shut off from any one of the feed pumps
to either set of biilers, and will be fitted with all proper escape, regulating, and drail valves ast iron, the crank shafts of wrough
rods and cranks will be of cast iron, and the crank pins of steel. \AA cast iron trough or raco will bo provided for each crank.
The fly-wheels will each be of 27 ft . in diameter, with rims 18 in .
deep and 1lin. wide, 50 as to enable the engines to pass their deep and 1 lin. wide, so as to enable the engines to pass their
centres with facility when working at a slow speed. The rims will centres with facinty when working at a slow speed. The rims will
be nently hollowed in the angles, , nd both rims and arms neatly
panelled oa the face, and each provided with a cast iron trough or
other packing of the most improved description, and will be fitted to wrought iron piston rods, cottered to pump rods, and passing these pumps will be bolted down to stones as shown, and stayed at the sires to the cast iron standards which carry the girder under centre plars by means of girders bolted thereto and to the iescen circular trough or culvert will be pipad in the valves. A cast cross arm of the engine-house parallel to the main feams the reception of the sewage from the pumps, as will be seen from the plan. Three of these culverts will be 6 ft . in diameter, and one Ioft. in diameter, for a length of 33 ft ., and 10 ft . 6 in . diameter for the remaining length of 12 ft . A cast iron air vessel, 13 ft . internal
diameter at the lower end, and 11 ft at the upper end, to the under side of the girders of engine-room floor, will bo fixe d at the intersection of the four arms of the culverts. The whole of the culverts and air vessel to be constructed so as to sustain with safoty a pressure of 20 lb . per inch super. Air pumps with cocks, valves, pipes, rods, and shafts will bo fixed for charging the several air tessels, and al requisite discharging valves, cooks, and pipes
fitted to pumps, delivery troughs, \&co, with proper appliances for

The boilers, oilers, 8 ft. in diameter and 40ft. in length. Their position and construction we shale illustrate in an early impression. There
will be two flue tubes, each 3ft. Sin. in diameter, extending from the front of the boiler for a length of 12 fft ., and united into one piece. The shell of the boiler will be tin. in thickness, of best
ind will be gin plates, lap rivetted, connected to the ends, which Sin. tubes to be bin., the breeches piece tin., and the the two 3 ft . tube $\frac{1}{\text { inin. in }}$ thickness, all of gaaranteed Lowmoor iron, and to
hive butt joints, with tayed by two vertical tubes, ono 10 in. and the other Gin in diameter. The ends of phateses, forming longitudinal oheamer in sinhells
of boilers will be doubly rivetted, and all holes throughout will bo of boilers will be doubly rivetted, and all holes throughout will bo
drilled and rimered out. Ench boiler will be fitted with one man hole, with wrought iron frame rivetted to boiler, and with faced
 Each boiler will be furnished with the following fittings:-One nozzle with 12 in. screw steam stop valve, brass-faced, two 6in.
safety valves, with levers and weights 40 lb . per square inch, one lock-up safety valve one pressure of steam whistlo, one atmospheric valve, one Chandler's 12in. water gauge, three gauge cocks, and one Bourdon's pressure gauge, and
one 3in. check and stop valve to feed pipe. Also dampers, damper

race. For moving the engines when on the dead centres there
will be a toothed wheel bolted on the wall, taking into a crab with shifting handle shaft and lever, so that all parts of the crab gearing shall be at rest when not re
quired. The va
The valvo gear will consist of shafts, gilent gearing, cams of not
less than bin. radius, carefully shaped and properly adjusted plummer blocks, adjustable valve rods, and levers, and other usual appendages; and the steam cams, will bo so arranged as to enabule
the steam to bo cut off at any varinble leng of stroke, and to the steam to bo cut off at any variable length of stroke, and to
these cams the action of the governor will be applied. An alterthese cams the action of the governor wil be applied. An alter
native arrangement will also be made for cutting off the steam at any length of stroke, independent of the action of the governor, steam is cut off. Also to the governor will bo attached suitable means for regulating the amount of injection water. The governors
will bo Pitcher's patent, driven from the fly-wheel shafts by wood and iron brvel wheels, placed underneath the floor of the engines. engines being limited to eleven revolutions per minute.
The semase pumps sixteen in number, will each comprise a
barrel 3eti 10 in in in diameter, and an upper and lower valve box with two sets of valve seats in each box, one for suction and the other for delivery; also a suction pipo communiating with upper
and lower suction valves, and a delivery pipe communicating in like manner with the upper and lower delivery valves, and at its lower end by means of a branch pipe with the main discharge
culvert. In this brand valve worked by a crever and spindle from the engine-room floor. A double-faced valve of similar make will also be fitted between the suction pipe and the upper suction valves, and a 6 in. opening
left in the top of the left in the top of tho upper valve box, hitcd for weadily lifting and
and furnished with all necessary means for real closing the same from the engiae-room
be divided into nine openings each 1 ft 3in. by 8 in. in the clear each opening being colosed by leather valves with wrought valve-
irons on back and face. The valves shall be suspended from lugs on back valve-irons, on rods turning in eyes cast on the valve seats. The valve seats will be very accurately cast and faced. The valves be of the best description of hide tin. thick, and will have laid in the tanpit for a period of two years. No belly pieces, or other soft, thin, or porous parts, will be used. The pump pistons will be
3 ft .10 inin. in diameter, with a stroke of 4 ft . Gin., with hemp or
frames, balance weights, balance rods, fastening screws, chains and pulleys, fire-bars, bearers, bridgo plate, dead plate, draught
doork, ash-pit plates, wrought iron double-plated folding furnace door and door frames, cast iron bearers for boilers, mud door, blow-off or mud taps, with 100ft. of 12in. pipe to each range of
boilers, and all other apparatus, matters, and things whatsoever shown upon the drawings or necessary and proper for the perfect working and safety of the boilers. Two mercurial syphon steam gauges will be provided and fixed where directed, to show 40 lb . pressure, with brass mountings, graduated scale, pipes and cooks, complete. The nozzles with 12 in. steam valve of each three aljacent boilers will bo connected together by a 9in. steam pipe, and
from the centre of the three valves a branch pipe 14in. in diameter will connect the steam pipe wivt a steam chamber of in thate plate, and 4 ft . in diameter. This chamber will extend over eacl range of boilers at the back of and parallel to the 9 in. steam pipes but will be divided at its mid length by a short length of $14 i \mathrm{in}$.
cast iron pipe, fitted with brass-faced slide valve cast iron pipe, fitted with brass-faced slide valve. All the cast
iron pipes will be fitted with expansion joints. From the end of ron pipes will be fitted with expansion joints. From the end
the steam chamber next the engine-house the steam pipe will be continued of cast iron, 20in. in diameter, and turned down under and across the eagine-room floor to meet the pipe from the opposite range of boilers, and from a point midway across the engine-house
the pipe will be returned the pipe will be returned at right angles and 28 in. in diameter to round which it will be conveyed 20in. in diameter, with connee, tions and branches therefrom to the several steam cylinders 14 in . and 10 in . respectively. All the pipes will be well and effe tually clothed, and to be fitted with valves, as shown in the draw he formed round the central well of the engine-hous angway wil be formed round the central well of the engine-house of open iron plates, carried
The materials, workmanship, and finish of the said engines and other works will respectively be the best of theic kind, and no part
of the engines will be of less strength than is equivalent to at least ten times the maximum presurenghtan is equivalent of the steam on the piston, the engines being intended to work expansively with pressure of the atmosphere, maximum height of 3 fft.
character of the de easy to do justice to the elaborately ornate character of the design as a whole. We shall shortly publish
drawings to an enlarged seale of the entablatures and columns
carrying the plummer blocks of the beams, from which something
may be learned of the beauty of the machinery. The design of may be learned of the beauty of the machinery. The design of
the engine and boiler, the chimney stalk, and, in fact, of every therengine the wholer, structure, does infinite credit to Mrr. Bazal. gette and his staff; while we are at a loss to detect a single feature
calculated to unnecessarily increase the outlay. Until wo have placed our readers in full possession of the details of this dainty palace of machinery-if we may use the words-it would not be
well to speak further of its merits. It is to be regretted that in well to speak further of its merits. It is to be regretted that in
the locality in which it will be erected it will not have half the attention it deserves. North London will feel its influence in the promotion of cleanliness and health far more than as an example
of high art in engineering.

LETTERS TO THE EDITOR.
(We do not hold ourselves responsibe for the opinions of our
Corresondents.)
THE WATERWITCH, VIPER, AND VIXEN.
Sis, -In your last publication, giving an account of the recent tions you tions you have expressed several unfavourable views and opinions
regarding the hydraulic or jet propeller, to which I hope you will
allow me allow me a few words in reply.
the actual value of the scheme." Allow me to say to this that a grent deal has already been done and decided. The Waterwitch sister ships with twin screws, Viper and Vixen, of the same power sister ships with twin screws, Niper and Vixen, or the same power
and displacement, and as nearly alike as the two systemis will
admit of, and the result was that at the trials at the Maslin the admit of, and the result was that at the trinls at the Maplin the
Waterwitch made, by the Admiralty reports, $9 \cdot 9$ knots, while the Waterwitch made, by the Admiralty reports, 9.9 knots, while the
Vixen made ouly $9{ }^{\circ}$, and the Viper 9 , 1 showing thus a arre percentage in favour of the hydraulic. At Stokes Bay the trials, as
reported, show that the hydraulic beat the Vixen again by about quarter of a knot, while the Viper had the advantage e o about a
corresponding extent. As the Viper, however, at the Maplinand no doubt doing her utmost-made only $9 \cdot 1 \mathrm{knots}$, it remains yet to be proved how she could posibly perform the feat at Stokes
Bay of doing the work of 150 extra horses with 0 .-hose power
less, with same boiler and same engines. Assuming, however, for arguments sake, the entire accuracyes. of the results ase give, for
arsen of
those trials, they still prove that the hydraulic holds its own thaments sake, still prove that the hydraulic holds its own
those tials, they still
against the, best double screws; and this shows that very much, against "he "esty little," acs ou say, has arready been decided.d as sto
isstad of "
the actual value of the hydraulic system. One single success is the actual value of the hydraulic system. One single success is
just as good as a hundred If thy hydralice does well in the
Waterwiteh, so will it do in any other vessel, or any number of

You further state "it is perfectly certain that the best arrange-
ments for applying it (the hydraulic system) in practice have yet ments for applying it "the hydraulice system) in practice have yet
to be designed." and "that the great 1oss of power manifested by
both the Nautilus and Waterwitch," is easily accounted for by the to be designed, and "that the great oss of power manifested by
both the Nautilus and Waterwitch," is easily accounted for by the
detectiver It may be safe, as a general remark, to guess that "the best arrangements shave, yet to be designed, ${ }^{\text {b }}$ but where it it there any
evidence of great loss of power manifested in either Nautilus or evidence of great loss of power manifested in either Nautilus or
Waterwith or of of the defective arrangements of the machinery -especially the turbine Pe The practical fact already known is that the hydraulic has beaten the screw with the Ruthven arrange-
ments; and that, too, in the first large vessel ever built; while the screwwhas had the, benenefit of nearly thirty y ears of previous perfecting.
Having accomplished this, there cannot-it is but reasonable Having accomplished this, there cannot-it is but reasonable
to think- be anything, very "defective in the arrangementsespecially the turbine;", nor is there much left to be gained.
Certainly, that ought not to be styled a bad or defective arrangement which already beats the old established propellers.
Neither has there been any loss of power proved in practice with
either Nautius or Waterwitch. What the latter has done has just either Nautilus or Waterwitch. What the latter has done has just
been stated; but the Nautilus, with her sister up-river vessels, has shown equal superiority. The Nautilus, as reported by all the press, at the trial in March, 1860, beat, at a fair race, the

Volunteer (Citizen Company's vessel), though the latter had | greater |
| :--- |
| lines. |
| lit |

Perhaps the "loss of power" to which you refer is not the loss is shown in the practical experiments-but the loss which with them. They have clearly demonstrated, as your pages recently showed, that four-fifths of the whole power was wasted becently showed, hydraulic, and there is nothing to set against this authority but the practical fact that if the hydraulic, which beats the screw
and padde, waste four-ifths of its power, these other propellers nust waste even still more.
London, 26 th August, 1867 .

. $\overline{\text { rattening." }}$

SIR,-I wish to call your attention, and that of your readers, to mode of procuring advertisements a adopted by the proprietors of
sicentific journal published in London, whieh, in my opinion, very much resembles a practice lately in vogue at Sheffield.
The facts which I have to lay before you are these: member of a firm of mechanical engineers, and we advertise in the sale of the machinentific papers for the purpose of assisting solicitations I was induced to give an advertisement for ane short
priod to the journal in question. On the expiry of the term period to the journal in question. On the expiry of the term
agreed upon I was, of course, asked to renew the advertisement, but I thought proper to decline its continuance, as we had not diately there appeared in this journal one of the most untruthfui and scurrilous articles ever ponned, evidently specially written and designed to damage the reputation of machines manufactured by my firm. A copy of an American paper, in which the
article was inserted, was a few weeks afterwards posted in London article was inserted, was a few weeks afterwards posted in London
to us anonymously, but I could see at a glance the source from which it came
Now, sir, my idea of the manner in which a newspaper ought to thing like a truthful organ of a profession it ought to have its editorial department distinct from the publishing and advertisement departments, so that the opinious and judgment of its editor
should be completely unbiassed by the contents of its advertising columns. Here, however, we find the closest connection. canvesser, it ediedor not nets in the capacity of advertisement should get articles presented to theen deviating from the pruth,
tod othera strongly influenced by a "page advertisement." It may and others strongly infuenced dy a page advertisement." It may celebrated engineers by the poid of the editorinl lever; but when the editor, in giving a "lift" to his "full page" friends, makes a
fulcrum of those who will not advertise, I consider, Sir, that such proceeding is as fair an attempt at tyranin ad In my case I may add thet I do
In my case 1 may add that I do not know the editor-the reonly communication I ever personally received from him being a letter wherein I was ingenioussly flatuered by being asked to lend the weight of my name as subscriber for
I believe I am only one of many who have been similarly treated
the journal to which I refer, and it would be well ff other by the journal to which I refer, and it would be well if others
would come forward-as one firm hal already done-to more folly would come forwaru-as one firm has arready done-e ex
draughtsmen's benevolennt society.
SIB,-I quite coincide with the opinion of your correspondent,
An Assistant." The time has indeed arrived for "something
decided to be done", and the sooner the better. Engineers draughtsmen and assistants are-more especially at the present
time, when engineering business is, to say the least of fit, dull-in a far worse position than the mechanic, who has his trades' union, and usualy a friendly society as woll, to fall back upon when he
is sick or out of work. This is not the case with the class of men
The who are employed as draughtsmen and assistants in engineering firms, yet these very men must necessarily have a superior oduac-
tion, their scientific knowledge alone must be far greater than is be capable of directing, and even performing, the work which he lays out and sends to the shop to be executed; he must also dress respectably, and I am confident that the great majority of draughtsmen will agree with me that it is scarcely possible to do so, and at
the same time to live even in a moderate state of comfort on a the same time to live even in a moderate state of comfort on a
salary rarely exceeding that of a competent fitter or turner, and
and average wages of those mechanics, Again, a draughtsman-as we all know too well - has more difficulty in obtaining a re-engagement dations as to character and ability may be. I might say more in favour of this much-needed association which will benefit a large taken up too much of your valuable space; I only hope that others more competent than myself will at once move in the matter, and
that at last " something decided will be done
London, August 27 th, 1867 .
the efficiency of heat engines.
Sir,-In The Exginerg of July 12th I endeavoured to illustrate the superiority of airas a fuad for the transmission of the power of
heat, by a very simple example of the application of heat to ai heat, water vecoryding to the first law of dypamicacs. I Iaso referred
and when
to what appeared to me a popular error in the application of the to what appeared to me a popular error in the application of the
second law of thermodynamiss, and invited scienticic men to show
wherein apparent conftict between the first and second law. Nexpone has,
and
to my knowledge, done so. In THE EscINERE of Jne 28th to my knowledge,
Professor Ranke sone states that the external of Jone done in
evaporating water under the mean atmospheric pressure is les evaporating water under the mean atmospheric pressure is less
than 7 p per cent. of the whole work, the remainder, or 92 per per
cent., being internal work, and that the internal work doue in exppanding air by heat is practically inappreciable. In the same
article he also states that the second law of thermodynain informs us that in order that the whole heat expended in
heat engine may be converted into external work, it is necessary
 that it was not necessary in an air engine. In The ExGINER July 19th, Professor Rankine makes an explanation, which I
undrostand to be substantially this: if in the air engine it is not
nece necessary to make use of 461 deg. Fah. below zero to utilise the
full value of the heat expended, 92 per per cent. (which is the
difference in the external work done by heat in expanding air and steam) must be lost in compressing the air.
In THE ENGINEER of July 2 Cth I Ishowed byotations from a
in "Manual of the Steam Engine" "that theoretically there was nothing lost by compressing air-that it would give out the same power by
expansion which was consumed by compression. In The ENGINEKB of August 2nd I am informed that, practically, in an air engine
the heat produced by the compression of the air is wholly und sequently the whole power 1 underatand it, implying that con sequanty Will a cobic foot of oinded when compressessed into half
Is it so
cabio cubio foot and allowed to stand under pressure until the heat pro-
duced by compression is radiated, remain in the space of half a duced by compression is radiated, remain in the space of half a
cubic foot without force? Certainly not. It will expand with nearly the force expended in compressing it, and by supplying aboutd 43 deg. Fah. of heat during expansion, the work pepears to
would be the same. Now is the 143 deg. of heat, which appar be all that is lost by compressing the air. 92 he per cent. of all the
heat imparted to the air in a properly
 143 deg . is about 30 per cent. of
for air against 7 Z per cent. for steam.
Perhaps it may be more satisfactory to the public to have some
practical demonstration in proof of the theory that air is a more economical fluid for the transmission of the power of heat than water. My air engine now on exhibition in the park is, fortu-
nately, so constructed as to give a perfect demonstration of nately, so constructed as to give a perfect demonstration of the
truth of this theory. It will be perceived by reference to the drawings, published in The EngiseEr of June 7th, that the
engine is provided with a tubular boiler or regenerator, for the purpose of transferring the heat from the exhaust nir to the air on its way from the air pump to the furnace, when it is used as an air heater. When used as a steam generator the air passages are
closed, the boiler filled with water, the steam pipe connected with
the funnce, and the heat of the estest All other conditions remain the exnaust is imparted to the water must pass to the regenerator in the exhust sir whether it is filled with water or air, and, consequently, if there is any difference in
the efficiency of the fluid it will be manifest in the worlk We discovered long ago that, in practice, air was more efficient in trials to determine as nearly as possible what the dife seneral trials to determine as nearly as possible what the difterence is,
In making the trials 132 lb of coal were weighed out for
each trial, and 66 lb of it were put in to malke the fire and get up heat to start with. In about 45 minutes after lighting
the fire the engine was started, and the pressure maintained at 10 lr by supplying coal in small quantititess about once in ten brake on the fly-wheel, the power indicated was 1333 -horse power. With the air regenerator the engine ran on the 66 lb . of coal sup-
plied to the fire after starting six hours; with water in the regenerator it ran 4 h . 40 min . on the same amount of coal; without Deducting the time run without the regenerator from the time on the heat timparted to the air in the regenerator. Deducting the
time run without the regenerator from the time run with water in time run without the regenerator from the time run with water in
the regenerator we find the engine ran one hour on the heat imparted to the water in the regenerator, showing that in actual quantity of work by expanding air than it will by expanding water and steam. If the second law of thermodynamics teaches that
there is no difference in the efficiency of the fluids it certainly does not harmonise with facts established by experiment.
If any scientific men would like to witness the experiments we hould be most happy to give them the opportunity.
Paris Exposition, August 27th, 1867. \qquad
Jacketted cylinders.
SLR,-If Messrs. Aveling's object in sending you the sections of their patent cylinder and our traction engine cylinder, published in
your last, had been to induce a fair comparison of the two, they would hasve given a description of ours as well a ao of theiriow, own, and
it would have been manifest that one is totally different from the other in principle, and bears no more resemblance in detail than
necessarily exists between one jacketted cylinder and another placed in similar position.
We are at a loss to know upon what grounds they intend to put
in force the threat which they make your paper the vehicle of conin force the threat which they make your paper the vehicle of con-
veying to us. Beoause they put their so called "dome" on the veying to us. Beauss, they put their so called "dome on the
fore part of the engine, does it infringo their patent to put the
working cylinder in the fore part of a traction ensine? Or, would working cylinder in the fore part of a traction engine? Or, would
the infringement be confined to putting a steam dome, or in ordi.
nary language a steam jacketted cylinder, on the fore part of the ongne? If Messrs. Aveling have, as they appear to suppose, legal remedy tead of in this way forcing themselves upon your columns, and thus
necessarily dragging us after them.
Ipswich, Aug. $2 \mathrm{th}, 1867$.
E. R. and F. Tunner.

OPENING OF THE MONT CENIS RAILWAY. The two Alpine railways, the one through and the other over exhibits, if if tay be said without offence, the smartest jockey.
craft. The first started project for connecting France and Italy oraft. The first started project for connecting France and Italy
by railway was by the route which includes a tannel of about yy rain way was a hal the miles long through Mont Cenis, with nearly
seven and
hirty-ife miles of very difficult approach to the tunnel, twelve niles from S . Nichel to Modane on the French, and twenty.two and a half miles from Susa to Bardeneche on the Italian side. The works for this important communication are of almost, if not
uite, unprecedented magnitude and costliness, and were from the commencement expected to occupy the labours of a consierabie series of years. They were commenced, backed by the imperial
and royal resources of France and Italy, in 1857. Of the fortyunnel has been in part made up to this time, and this portion, being driven from the openings on each side of the mountain, is of course the easiest of execution. On the most favourable estimate
the next decade will be far advanced before the tunnel line can he next decade will be far advanced before the tunnel line can works were commenced and persuaded the imperial and royal promoters that they could give them the advantages of railway communication for a number of years before the route could beready. This they proposed to accomplish by going over instead of through
the mountain, and almost all that they needed, in the way of oads through the pass, facilities which they now their line, only about six and a-balf miles longer than the "direct" tunnel line, is practically finished, and was inspected on Monday last by Captain Tyler, R.E. OMilial intervention is
called for, inasmuch as the Mont Cenis Railway will form part of she route by which the Eastern mails will in future be sent, at a nost successful, was over the entire length of the line from St. the inundations of last autumn to the Government road, upon which the line is for the greater part laid, is now completely repaired, and the works throughout give the best promise of
stability. Between St. Michol on the French, and Susa on the St. Michel is 2493 ft . above the sea, Lanslebourg is 2099ft. higher and the summit, about six miles from Lanslebourg, and between it ascended by an average gradient of 1 in 14. From the summit to Susa, fourteen miles, the average gradient il in in 17, but three
miles being comparatively level, the prevailing gradient on this leng is really 1 in 12. The Fell system of traction, adopted upon nounce, was tried on this occasion upon what may be pro-
nountequate cale, and gave conclusive evidence of its
afety and efficiencoy. The existing traffic safety and efficiency. The existing traffic across the Mont
Cenis is very great, and may bo expected to be largely in-
creased on and after the opening of the line on the next. The average passengers both ways daily by road is about
220 , with about 120 tons of goods daily. The number of horse engaged in the conveyance of passengers and goods across Mont Cenis is about 1200, which, allowing ten miles a day to each
borse, gives a daily average of about 12,000 miles travelled horse, gives a daily average of about 12000 miles travelled. In
the event of the system of traction proving indigputably safe-as that this overground line will prove the preferred permanen route, as there are few travellers who will not prefer a slight
detour, an hour or two's detention, and a pretty stiff gradient, to Captain T-aler mile tunnel. Broner--in of the line; the Brogden, and Mr. Fell, directors; Mr. Blake, who has carried out the works for the railway and the re superintended the construction of the engines; Mr. Barnes, locomotiv superintendent; Captaif Bernout R.E., and others. The St. Nichel, With the formal opening of this line in October railway commu-
nication will be complete between Calais and the south of Italy.

METROPOLITAN MEAT AND POULTRY MARKET.

Os p. 172 will be found further details of this beautiful structure, coysisting of half elevation and half section of cen
roadway, and part of a longitudinal section through the same.
aghicultural Esgine tral at Blllancourt on the 26 th Isst.- The following table gives the resalts obtained at the first in our notice of the French Exhibition for this week. We hav not yet received particulars of the second days stria. It was, how-
ever, not of much importance, there having been only three engines - one English (Allen's engine, by Tusford and Sons), and
two French result of the trial of the former engine, which is, in reality, a port able on Woolf's principle

				析								
Ransome and sims ..	10	7	,	1561	1034	3 l			1.62	3.6		19.84
Marslinall and Sons		$\begin{array}{l\|l} 8 & 65 \end{array}$	58	147	3				2.28			
Gerrard		61000		144					2.94			
Ferrinnana Del		6	0	140					$2 \cdot 709$			
Protte, of Vendnore			6	123	42				3760			
Canterau ..		5										

The breech apparatus employed by Messrs. Ransome and Sims, in the trial of their
consisted of a strap with hard power portable expansion engine wheel of the engine, the ends of the strap being united by a right and left-hand screw for obtaining the necessary grip. On one side of the wheel a scale for carrying the load was suspended by a
leather strap forming a vertical tangent to the fly-wheel and maintaining the load at a constant distance from the centre; on the
opposite ide of the fly-wheel a similar vertical strap carried a spring-balance, the bottom of which was attached to a fixed point
near the near the grannd
side opposite to the application of torms the princingal feature of the on
arrangement, the spring-balnnce being the index, showing at arrangement, the spring-balnnce being the index, showing at once
any variation which takes place in the friction of the break-strap on the fly-wheel, and also furnishing a means of adjusting the load to the required speed, for on tightening up the strap the spring
balance will indicate less, which is equivalent to adding more to the load, and the engine will run slower

PUMPING ENGINE, ABBEY MILLS; METROPOLITAN MAIN DRAINAGE.
mr. bazalgette, engineer.

notice.

*** The office of The Engineer at the Paris Exhibition is situated close to the promenade round the building,
and opposite to the English boiler-house. Our correspondents in Paris will be happy to be of use to any of our En
Messrs. Kirklands have undertaken the agency of this journal at the Exhibition, and it will alvayys be found
sale at their English newspaper office, Gallery VII.

TO CORRESPONDENTS.

* We beg to call the attention of our Advertisers to the notice belove, and to state that the large circulation of THE ENGNER
compless us to or o ot press at an arary hour on the morning of
publication publication, Advertisements, to ensure insertion, must be de. *eening of each weck.
names and addresses of the voriters, nut necessarily for insertion, but as an evidence of good faith.
must therefore request our comren drazoings or manuscripts, and
 A More with sajety.
A. CRAIG.- Your lette

Sis, - Can you or any of your correspondents kindly give me, through tha
medtum of your paper, the names of parties having interestitin the recent dis-
coveries of shale which are reported to have been made in France
9, Victoria Chambers.
HENBY DAVEY.

engineering societies in manchester.

STR,-Would you or any of your correspondents be kind enough to inform
me ir there exists in Manchester a soclety for the discuassion of topics connected
with engineering which will admit an apprentice? Advertisements cannot be inserted unles delivered before seven o oclock
on TTurday erening in each week. The charge for four lines and under is
three shillings; each line aftercards, eightpence. The line averages eight words; bree shiuings; each line afterwards, eightpence. The line averages sigh w words
blocks are charged the ame rate for the space they fill. All single advertise-
ments from the country must be accompanied by stamps in payment.

MARRIAGE.
On the 15th Jaly, at Kussowlie, Punjaub, EDWARD TANNER, Esq., C.E.,
o MARY, ,
DEATH.
On the 17th July, at Dinapore, Shahnbad, from dysentery, W. PurcriL,
Ess.. C.E., E.I.R., Calcutta, eldest son of the late F. Purcell, Esqq., Dublin,
aged 46 .

THE ENGINEER.

FRIDA Y, AUGUST $30,1867$.

working steam expansively.

ALl engineers agree that to work steam economically it must be worked expansively, but engineers disagree as to
the best method of constructing engines in which steam is expanded. The value of the principle is recognised, but wide differences of opinion may be met with as to the way in which the principle should be applied in practice. to invention, it is more than probable that the progress of the steam engine towards the perfection of economy has attain the same end by different means; very grave mistakes have been made; much money expended to no purpose, and a fair proportion of talent wasted in consequence. talent does not represent the worst. Engines theoretically talent does not represent the worst. Engines theoretically
right in principle but practically faulty in construction, right in principle but practically fauly in constructiod to the disgust of purchasers. The general public of manu-
faeturers, shipowners, and other employers of steam powe ${ }^{1}$ seldom dive very deeply below the surface of things, theoretical and practical shortcomings. In other words all shortcomings represent practical commercial losses, and thus if a mistake is made in the method adopted in carrying out any priuciple - say that of expanof the principle as to the lack of skill, knowledge, or perception of mechanical fitness in the engineer. Thus, if a manufacturer of cotton thread buys an engine which he is assured is constructed on such a principle that it
will save him much money in coal, and this engine is constantly out of repair, he will be almost certain to attribute the fact to the principle, not to the maker, provided only the workmanship appears good. If but even then he will not be unwilling to think that the expense of applying the principle must be so great that he cannot expect to obtain first-class workmanship and the principle together for the price of first-class workmanship only. In this way an idea grew up many years ago, and is still sufficiently prevalent, that an engine to work expanThere is just such a basis of truth lying below this theory that it is difficult to combat it, and there can be no doubt that as a result engines in which the principle of expansion is fairly carried out do not receive that general recornition of their value as representing a good principle, which they deserve. We shall not attempt to prove that complication does not necessarily mean a liability to disarrangement; those who have had to deal with complex machines know better than to be led into error by any reasoning on the subject. In our eyes complication is a monstrosity in engineering. We wish it, of course, to be understood that is not necessarily complicated because it has a machine of parts, provided no fewer can be used to obtain a required end; but complexity commences the moment a single unnecessary part or motion is introduced. We shall, therefore, not dispute with those who assert that complicated steam machinery is more liable to get out of order than simple steam machinery, but we believe it may be shown that the fullest benefit which the principle can confer may be derived from expansion in engines of exceedingly simple construction; that no multiplication of parts or motions is those in which steam is not greatly expanded, and that, in short, the whole question is one far more of proportion and arrangement of the members of a design than of anything else. Complexity in steam machinery generally represents the embodiment of the crotchets of an inventor, seldom or never the necessities of practice.
Inventors have done their best and their worst with pistons, cylinders, connecting rods, and guides; but those members of the entire machine have such straightorward
duties to perform, and are so simple in their nature, that we seldom or never meet with any complexity in their construction or arrangement. When we turn to
the means adopted for distributing steam we find that the means adopted for distributing steam we find that we
have, so to speak, entered a new mechanical region. The have, so to speak, entered a new mechanical region. The
patents which have been taken out for "improvements in the valves of steam engines, and the means to be employed in driving the same," may be counted by hundreds, and these most probably represent but a small proportion of all the inventions in valve gear which have been made.
It may be stated, without fear of contradiction, that in It may be stated, without fear of contradiction, that in
complex steam engines the complexity is almost certain to complex steam engines the complexity is almost certain
exist in the valves and valve gear and nowhere else, in exist in the valves and valve gear and nowhere else, in
nine cases out of ten. It is not to be assumed that this complication is introduced without a purpose, and improvements in valve gear generally "have for their object to effect a better distribution of the steam than can be had from other means." For this, then, links
and cams, and double and treble eccentrics, and differential and cams, and double and treble eccentrics, and differential
gear, and rocking shafts, and trip hooks and dash pots, and gear, and rocking shafts, and trip hooks and dash pots, and
a multiplicity of valves, are employed. Before we can decide how far the use of any of these things-of any arrangement, in short, more complicated than the common three-ported valve face and slide driven by a single eccen tric, is justified, it is necessary to determine exactly what the best principle of distributing steam is; and, secondly how far complex valve gear is calculated to give better results than gear of the simplest form. There is little trouble in doing this, although many inventors contrive to
mystify themselves strangely in dealing with the subject. mystify themselves strangely in dealing with the subject. If the valves giving admission to and exit from a cylinder could be opened suddenly at the prope out expansion, and entered and escaped from the cylinder without sensible frictional retardation, then would an indicator diagram taken under such circumstances be a perfect rectangle, shown by c, f, d, g; andir its a , while its length represented the stroke of the engine, then would the which could be got out of the engine during any one stroke under the given limitations of boiler pressure and vacuum. We have now lying before us a diagram taken from a

steam fire engine, the valve of which has very little lap or lead, which is nearly a perfect rectangle; but such diagrams are never taken from engines in which economy of fuel is engines -a matter of no importance whatever in steam fire only of the complete rectangle, and it may be divided into
two parts; one of these represents the power exerted
while steam continued to enter the cylinder, the other
the power exerted after the admission port was closed by the power exerted after the admission port was closed by the steam expanding. Now as a perfect rectangle would represent the greatest amount of power which can be obtained through any single stroke, so will a perfect rectangle represent the maximum development of power through any portion of a stroke to which that rectangle corresponds. In the case of the practical steam engine this rectangle can only be contained between a line a, b drawn across the diagram from the point where admission cease and the terminal line of the diagram, c, d representing the maximum pressure in the cylinder. Under any circumstances that portion of the cylinder corresponding to the rectangle must receive the same volume of steam from the boiler, that is to say, it must be filled; and it is therefore important that during this, the first portion of the stroke the engine should develope the greatest possible power; but this condition can only be ensured when the action of the valves is such that the first part of the diagram, as we have said, is approximately a rectangle. If the valve opens too slowly cut and the space between it and d represents a loss of fuel, because while the piston moved through the space corresponding subsequas not submitted to a pressure equal to that could be attained at all, the space e, c, d, had to be filled up to the maximum pressure by steam doing no work on the piston; the loss, in a word, exactly resembles in character that due to clearance. If, on the other hand, the valve opened too soon a space would be cut off the rectangle at would represent a loss of power but not a waste of fuel, as the steam compressed would be available for the return stroke. Still it is not expedient, from many reasons well understood, that compression should be carried to excess and therefore the more nearly a perfect rectangle the full pressure part of the diagram is, the better, within certain imits.
So much for the influence exerted on the shape of the diagram by the opening of the admission and the closing fluence of the mode in which now to consider the inthe valve acts point a : and if the cylinder be lopt commence at the expansion will be nearly that due to the operation of Mariotte's law. If the port is not closed quickly, steam will continue to find its way into the cylinder, and the curve will be too high. It is true that the steam so entering will act to impel the engine and increase the total power of the machine; but this steam acts to a disadvantage, great portion of its pressure being lost through wire
 parallel in the case of an exinsio. We had a precise wire-drawn, and therefore is worked at a loss,* It is unnecessary to point out how essential it is to economy that the exhaust port should be opened as quickly as pos sible to its full area
The deductions from the foregoing statement of facts lie and close the The valves of a steam engine should open and close the ports as quickly as possible at the proper
time, and any arrangement which will effect this sudden opening and closing will give first-class results as far as opening and closing will give first-class results as far as
economy is concerned; whether the action is the best possible may be at all times determined by taking a diagram Now it so happens that diagrams take from engines with the common slide valve with a good lap and lead, and a long stroke, may be, and frequently are, quite equal to any which are taken from engines with the most complex gear been obtained from complicated engines as a consequence of the action of their valves which cannot also be paralleled with ease in the case of engines of the simplest construc tion. The fact-and that it is a fact admits of the fulles proof-demonstrates that the use of complicated valve geai
is a mistake. It adds to the first cost of the machine, and to the expenses of its maintenance; while the assertion that by such means, and such means only, economy of fuel lisit, a the the expansion, the full retard the adoption of the principle o upon the whole the distribution of steam be effected by two D valves, one at each end of the cylinder each con trolling an exhaust and admission port, about as well as in any other way. The valves may be of the gridiron or marine engine type, worked by a single eccentric, and provided with an amount of lap corresponding to the required point of cut off. The valves when large may be balanced by a simple ring at the back. In is deemed desirable to introduce a still sharper action of the valve than can thus be had, a second eccentric may be employed working cut-ofl valves on the backs of the main valves, and these cut-ofi valves can easily be made to act the part of equilibrium rings. The ordinary link motion, or a modification of it, with but a single eccentric, may be used when it is desir able that the cut-off should be variable. An engine constructed on such a principle will cost less money, be less liable to get out of order, require less care in its management, and give more satisfaction, even as regards economy of fuel, than complicated machines, delicate in their operation, and extracting, or pretending to extract, a fraction more power from each pound of coal burned than their apparenty commonplace rivals. Cam gear and puppet valve modification of the slide valve, but unfortunately one not very well suited for engines running much over twenty revolutions per minute. The maximum degree of comby the use of a second slide worked on the back of the main valve by a distinct eccentric, and even this is only required in the case of engines expanding largely in single cylinder. When compound cylinders are used very early cut-off is not required, and the ordinary slide

valve will upon the whole give, over a series of years,
more satisfactory results than any other arrangement.

iron roors.

Had the same necessity arisen for the employment of ron in the roofs of railway stations and of other large
buildings as existed in the case of bridges, there is no buildings as existed in the case of bridges, there is no
question but that the application of iron would have received a far greater development in that particular branch of construction than it has done. Taking the span in the
clear as the standard there is no precedent for a timber clear as the standard there is no precedent for a timber
bridge possessing the proportions of that over the Menai bridge possessing the proportions of that over the Menai
Straits; but there is a precedent for timber roofs, exceeding in dimensions any similar structure erected of iron,
based upon the same datum. We are, therefore, justified in asserting that many railway bridges have been constructed of iron from the sheer impossibility of building them of timber; but we cannot advance the same argu-
ment in favour of iron roofs. The important considerations of durability, incombustibility, lightness, and elegance of outline have mainly tended to their adoption; and what in the one case was an impossibility in the other was a matter
of judgment, engineering good taste, and ultimate economy. of judgment, engineering good taste, and ultimate economy.
Anticipating a little, we may say that the roof of the largest span will be that over the Midland Railway Station
at St. Pancras. This, however, has been equalled within five feet, many years ago, by the laminated timber system of De Lorme, in the splendid example at Moscow. In
tracing what might be termed the history of iron roofs, we shall find a strong analogy between them and their contemporaries, iron bridges, Similarly to the latter, the
first examples of the former were constructed of cast iron, and, although a few casualties occurred, yet, in consequence of the comparatively insignificant duty imposed upon them,
theyarenot very liable to be effected by causes which exercise theyarenot very liable to be effected by causes which exercise
a most dangerous influence upon their more heavily-loaded a most dangerous intluence upon their more heavily-loaded
neighbours. The difference between a roof and a bridge, so far as external forces are concerned, is that the former
has no rolling or moving load to contend against. A variable load it certainly has-the pressure of the wind, the weight of a fall of snow, or of a heavy rain or hailstorm, for instance-but these cannot be regarded as movable or
rolling loads; they are allowed for upon statical principles. While it will be admitted that the effects of a heavy rolling load-particularly if it be, as it frequently is, enormously
disproportionate to the dead weight of the structure- is calculated to actually imperil the security of a cast iron bridge, it cannot be argued that a roof of the same material is liable to be effected to the same extent by the forces
acting upon it. The absolute safety of the structure is concerned in the one instance but not in the other
The next step in the construction of iron roofs afford another point of similitude between them and bridges of and wrought iron. There never was a more mischievous and sophistical interpretation of the laws of pure theory
than that exemplified in the application alluded to. It was argued that because cast iron was stronger when submitted to a compressive or crushing strain than wrought, therefore those parts of a design under a strain of compression should be of cast iron; and, for a similar reason, be of wrought iron. Prima facie, nothing appears more wofully disappointed these theoretical anticipations. One little fact was lost sight of in the calculation, and that was With different rates of expansion and contraction for the same alterations of temperature, with different degrees of so adjusted that when they were called upon to fulfil their common duty each should contribute its own share of reright place? This was the rock upon which all these combinations, and compound girders split; and yet, strange to say, it was not until several serious and disastrous failures had taken place, involving loss of life, that many engineer rigid dictates of theory must always undergo more or less modifications in actual practice. That some are not evennow convinced of the mistake is apparent from the fact that nothing is more common than to witness roofs designed has been already stated respecting the different duties imposed upon bridges and roofs, it is manifest that this a small scale-without necessarily entailing their destruction. As roofs upon the plate girder system are of very and pass on to notice the usual open truss wrought iron roof. It will be found, as may be naturally expected, that the earliest examples of this character now in eristenich attended the original attempts at open web bridge work. Indeed, the first specimens of the lattice system, so far as the peculiar principle of openwork
the application of "rule of thumb" to modern engineering. To all other intents and purposes they are standing example respecting the true nature of strains upon ironwork. To strain of compression with those which were undergoing one of tension was a common fault. Mr. Fairbairn, in has
third series of "Useful Information for Engineers," mentious a prominent instance where this blunder was committed, and, in fact, there is not a drawing of the earlier designs of open trusses from which it would be possible to
gather information respecting the different strains actin upon the component parts. It might be asked that struts and ties can be employed in this heterogeneous and indiscriminate manner, how is it that the structure is able
to perform its duty unless it is a question of no moment what parts are in compression and what in tension? The answer is, that owing to the large margin of strength
allowed, particularly in the earlier examples of ironwork the ties and struts were enabled to interchange duties
moreover, when the design is upon a small scale, and the moreover, when the design is upon a smal scale, and the
ties very short, there is comparatively but a very slight tendency to deflection upon their part when they are compelled to act as struts. At the present time, when engineers somilar nature in a bridge or roof of large dimensions would be obvious at once. Were it not so the proper conclusion to be drawn would be that there was an enormous surplus of material in the design, and, consequentiy, an unpardonable waste of money. In every frame or truss, whether of timber or iron, no one part ever performs the duty properly belonging to another without a sacrifice being incurred somewhere. Each bar has itsown work, so to spenk,
cut out for it, and, in the due execution of the individual at out for ion. Before leaving the trussed roof, or that descirtion iou. Before leang he thassed roof, or that description involving the employment of the ordinary rafters or prin-
cipals, the introduction of the inclined tie rod should be noticed, for, although not peculiar to iron roofs, it is rarely seen in those of timber. By its means additional headway lo oraines, must be paid for, in this instance by an increase in the strains upon all parts except the struts. The normal direction of the tie rod of a roof is that of the horizontal thrust which it is intended to resist, and directly this is departed from the principle of the roof becomes to
some extent infringed upon, and additional strength is equired to compensate for its violation
With the erection of new and larger railway stations than had previously been even contemplated, came the
erection of roofs upon a scale of commensurate magnitude. erection of roofs upon a scale of commensurate magnitude.
The form given to these gigantic structures is that of a curved truss, of which the curve may be of a regular or irregular character. Sometimes the principals are simply
bow and string girders, similar to those at the London bow and string girders, similar to those at the London
Bridge station of the Brighton line. For large spans this rinciple of construction undoubtedly possesses stron features of recommendation, and is to be preferred to the bastard system of trussing adopted in the roof of the
Charing Cross Railway, although, at the same time it does not afford the same headway with the same height of side wall as the latter roof, in consequence of the necessity
of the tie rod being horizontal. Theoretically the difference between the principle of the bow and string
irder and that composing the roof at Charing Cros irder and that composing the roof at Charing Cross
tation, which is a curved truss, is that in the former the sections of the bow and string, or upper and lower flange, are equal and constant throughout the span, and there is no strain upon the diagonals, since they are not subjected to a rolling load. By making the horizontal tie rod of a bow and string girder of a polygonal form with various we at once destroy its principle and make a curved truss of it, and in this instance the strains are no longer equal and constant in the upper and lower flanges, but vary
from the centre to the ends, and the diagonals undergo trains centre to the ent, tion. When the walls are of a height similar to those of he Charing Cross and Cannon-street stations, the amount of additional headway dependent upon the mere raising of the tie rod is of no importance, and therefore for this cause alone there is no particular reason for giving the preference to the curved truss girder. Any one who has been under the roof over the platform and station of the London and North-W estern Railway cannot help observing its extreme the great want of light. The multiplicity of pillars supporting the roof is also a serious inconvenience. All these objections-and they are undoubtedly valid ones-are whether in new system, but os asso very question. The great height of the roofs of the stations we have menxped has been objected to as unnecessary and needlessly ame roof could not well be placed lower down; that is, the height of the side walls could not be lowered to any great extent without destroying what must always be adhered to in every design, namely, proportion. The height at which the springing must take place, and to which the crown should attain. A large room must evidently be higher than a small one, or it will always apppar low. If the dome of st. Penovergrown coke furnace or big oven. The real question to decide upon in designing a roof for any large building is whether there are to be intermediate pillarsornot. Is the roof to bein one span from wall to wall, or is the span to be divided into sub-multiples ? Having once decided upon the former plan the height must be regulated in proportion. There is, however, a wide difference between the erection of a multiplicity of station, and in the judicious introduction of a few for the purpose of curtailing what would otherwise be a roof of gigantic proportions; and it might be observed that-there is no possible utility in constructing a roof of dimensions similar to those of the future St. Pancras station. When the conditions of a sufficiency of light, air, and space, in work of utility, but of supererogation. It is scarcely necessary to comment upon the costly nature of these monster roofs, since, like that of bridges, it increases in ratio far more rapid than-that of the span. The idea of
vastuess and size that is appreciable in the interior is well vastuess aud size thated by their external appearance. Viewed from the river Charing Cross and Cannon-street Stations completely eclipse the churches in the Strand; and were a stranger at
distance to mistake their rounded contours for the dome of St. Paul's the error would not be an unpardonable one.

fichael yaraday.

Afrer a long and active life, devoted to the pursuit of the great truths of Nature with sueh earnestness, simplicity, and success as could not fail to gain for him the the world of Science and Letters could bestow, Michael Faraday quietly ended his days in the circle of his family
on Sunday last at Hampton. The history of his life has what sen, and so rightly, been held up as an example of everyone, help can make a man, that it must oe caw leading points will, therefore, answer the present purpose. Faraday points will, therefore, answer the present purpose. Faraday
was born in the month of September, 1791, at Newington, in the county of Surrey. His father, who was a native of Yorkshire, appears to have been possessed of but limited Yorkshire, appears to have been possessed of but limited beyond the veriest rudiments of knowledge that are to be acquired in a day-school. As soon as young Faraday was acquired in a day-school. As soon as young Faraday was
in his teens he was bound apprentice to a bookbinder of Blandford-street, choosing this vocation to be among books, "But," to quote his own words, "I was very fond of exBut," to quote his own words, "I was very fond of ex-
periment and very averse to trade." So he bought what volumes and apparatus his earnings allowed, and taught himself. The intelligence of this apprentice of Riebau's attracted the attention of a gentleman named Dance, wh took him to the Royal Institution to hear the last fou to tes that Davy delivered in 1812 . Faraday knew how pared fallon by the hand; of these four lectures he pre pared a full set of illustrated notes and sent them to th lecturer, together with an expression of his wishes to pur-
sue the study of science. He was kindly received, and the advice which Davy gave him at this time gives us a good insight into Faraday s character, and cannot be better tol
thanin his own words:- "Whilst he thusgratified my den as to scientific employment, he still advised me not to give up the prospects i bad before me, telling me that Science was a harsh mistress, and, in a pecuniary point of
view, but poorly rewarding those who devoted the view, but poorly rewarding those who devoted themselve
to her service. He smiled at my notion ther service. He smiled at my notion of the superio moral feelings of philosophic men, and said he would leave
me to the experience of a few years to set me right on that me to the experience of a few years to set me right on that assistant in the laboratory of the Institution, and here itwa he resided for the greater portion of his life. Thus at last he was enabled to engage in his favourite study; the gates
of Science were opened to him and he was free to enter in,

And wander away and away Into regions yet untrod,

And read what was still unread
During the following year he made the grand tour in the capacity of secretary to his friend sir Humphry, and on
his return commenced those investigations of nature that extended over half a century. His first paper, on a native by a number of others recording, by a number of others recording, among the more impor-
tant results, the formation of chloride of carbon, certain phenomena of electro-magnetism, and the liquefaction of bodies generally existing as gases. The year 1827 first saw him at the lecture table of the Institution. The produc tion of suitable glass for optical purposes was his next
triumph, and he now commenced his experimental investitriumph, and he now commenced his experimental investi-
gations on electricity, the results of which, during the space gations on electricity, the results of which, during the space
of some ten years, form one of the grandest achievement f exact scientific research on record. The recognition of his labours was not long wanting. In 1832 Oxford con ferred on him an honorary degree, and in the succeeding
year Dr. Faraday was, by the wish of the founder, called to the chair of the Fullerian Professorship of Chemistry established at the Royal Institution at this period Honours, titles, medals, now poured in upon him fron him pension, and preferments of various kinds wed offered to him
Still we find him engaged with untiring zeal in reading of the magnetic character of oxygen, more recently his investigation of the phenomenon of regelation, and mor recently still that on the relation of metals to light. Dur ing his later years he withdrew himself from the excite ment of scientific life to the residence which the Queen provided for him at Hampton Court. He had to conten himself with an occasional lecture at Albemarle-street, and the usual Christmas course that he was wont to deliver to an auditory of young people. At last this, too, had to be given up, and at nearly his last lecture-one on platinum, n-1t was sad to mark the faling powers and hea hm express his wish to retire, "as I thunk everyoue ough to do before his faculties become impaired; but 1 must who freat the anfection fhave for this place, and for thon he preut place, is such Hat 1 the proper time has arrived. He spoke agam at was done And thus one of the brightest stars that ever adorned Science rose, culminated, and-has set. Beautiful as such life as this must be acknowledged to be, it was in his character, and earnestness of purpose that drew all to him, and will cause the remembrance of this grand old Christian gentleman to be carried very tenderly in the hearts of all who had the good fortune to possess his friendship. When the entirety we recognise the President of the Royal Society-"That the greatest dis covery D."
kDifons AND ADVERTISERS.
JAMEs, AND Co. and "A. B." have called Mrssns. Powis, Jases, and Co. and "A. B." have called
attention to an abuse of the press, which is, we believe, as rare attention to an abusle. No better definition of this phenomenon of journaism than tatteroptich by our correspondent "A. . .
as the title of his leter devised. The words "newspaper rattening", pithily express the
scope and intent of the practice to which he alludes, and the scopa and intent of the practice to which he alween this practice and the policy of sheffieid to which both our correspondents refer, and we have been at some pains to investigate the accuracy of their statements
before admitting their letters to a place in our columns, and if is only fair to both to say that the contents of their letters on the principle of rattening those who will not adyertise in it pages can only hope to subsist on the weakness of those whom
the proprietors or editors endeavour to terrify into compliance
with their wishes. It unfortumately happens that a large class
of manufacturers entertain an uwhiotesome fear of leading
 result this black mail system, if managed with somene cantion by
unscrupulous men, may succeed for a time. In the logg rum, however, it is certain to bo exposed and denounced by some individual stronger-minded than his fellows, who refuses
to submit to umwrrnuthble exactions to submit to uwwarrautbble exactions. determine what the result of such an exposure many be . We ehare
happily no precedent to go on in in orming an opinion as far as the respectable portion of the London pressis sconcerned; but there are,
we beliere, unstances of newspaper rattening to be met with in Wistereve, ustances of newppaper rattening to be met with in tho
 perceive that any journal adopting the practioe must ultimatel)
lose casto and infuence. A journal which rattens a man be cuase he withdraws ane. Advertisement, or beceuse he we wail no give one, must be watk Any newspaper which enjoys a large
and infuential cirvulation can obtain all the advertisements fo
wit which it has room without trouble, by the oost periectly legiti-
mate means. Advertisements appering in its pages are ofound

 cinlly to the attention of those who pay in order tuat
their roputation, or hhat of their goods, may not be sasuiled
Once its inpotence is reoonieed the power of the offending
 measures the merits of men or machines by the canterts of
advertising columns with which he thould have nothing to do

 or sunficiently audacious to stiveo advertisements into his pages
by an organied systen of terrorism. by an organised system of terrorism.

LITERATURE.

The Central-fire Cartridge before the Lav Courts, the Government,
and the Pubtic; showing who Introduced the System into and the Public; showing who Introduced the System into
England, who has Improved it, who has Benefitted by it, and who
ought to be Rewarded for it. By George H. Daw. ought to be Rewarded for it. By George H. Daw.
Under the above somewhat lengthy title Mr. Daw has printed, "for private circulation," a pamphlet in which he of central fire cartridge, with the view to prove that his cartridge of 1861 is the basis upon which the Goveroment
service cartridge and that manufactured by Messrs. Eley service cartridge and that manufactured by Messrs. Eley which it has thereby undergone are simply, in their real nature, evasions. The subject is certainly a very important one, for not only does the author assert that his system of cartridge has been flagrantly copied, but that the copies are much les
Sixty rounds, he says, of the latest Woolwich cartridge weigh 6 lb .8 oz , while the same number of his own,
having the same weight of powder and ball as those of the service pattern, weigh only 51 lb .11 oz , being a saving of 13 oz . per sixty rounds which the soldier has to carry.
Mr. Daw also points out that his metal cartridge does not Mr. Daw also points out that his metal cartridge does not length of chamber, and consequently of cartridge, is of course detrimental to loadin
The early history of this battle of the cartridges seems to be pretty much as follows:-About 1853 a Frenchman cartridge, which was taken up by Mr. Lancaster, and apparently was not a success. About two years later a
modification of this cartridge was patented by Pottet, also Frenchman, and this Pottet cartridge has since played a very prominent part in the question. This cartridge, as
will be seen from the accompanying engraving,

40was discharged by a percussion, cap introduced into a recess formed at the rear end of the cart-
ridge, so that the percussion powder in the cap ridge, so that the percussion powder in the cap
came into contact with a thin flat anvil placed in a metal chamber, and secured in its place by
the cap itself. This little anvil, it will be seen, the cap itself. This little anvil, it will be seen,
is the apple of discord among the contendthe apple of discord among the contend-
Mr. Lancaster also adopted this patent, ing inventors. Mr. Lancaster also adopted this patent,
but did not further patent it in England; and it too,
like its predecessor, does not seem to have given salike its predecessor, does not seem to have given sa-
tisfaction. The anvil was too long and narrow, and was apt to become displaced, aud so miss fire. Be-
sides, the space between the anvil aud the sides of the chamber was too great; the gas from the exploding
artridge frequently recoiled upon the cap and drove cartridge frequently recoiled upon the cap and drove was stated in evidence at the tral Daw v. Eley, in
November, 1865 , that Mr. Lancaster came to Messrs. Eley some time in 1857, and suggested some improvements in the Pottet cartridge, which he desired might be carried out, the most important of which was a change in the shape of the anvil. Mr. Lancaster said he tried several schemes. He tried a square anvil, and afterwards contrived one that was triangular in shape with plane sides, so as to be less liable
to displacement in the cap. No exact date could be assigned at which these alterations were made, nor was a single specimen of the new anvil produced at the trial. It could not have been a success at all events, as cartridges
made on this plan were never offered for sale, and none made on this plan were never offered for sale, and none
seem to have been made later than 1858. Sir W. Page Wood accordingly ruled that there was not sufficient evidence here to invalidate a subsequent patent.
We now come to Schneider's patent. In September, 1861, Mr. Daw applied for a patent in this conntry, under
Mr. Schneider's name, for an invention in some respects
similar to that of Pottet, in which a cylindrical grooved-
sided anvil pointed at one extremity was substituted for the awkward flat-shaped anvil of the old pattern. To quote the patent specitication, "The anvil used in these cartridges is, by preference, of a cylindrical form; it has
longitudinal grooves in it, by which the fire of the perpowder may readily pass from the cap to and through the opening at the fore end of the chamber or recess in which the anvil and percussion cap are received," then come words which are very important: "It is not hould have four longitudinal cuts or grooves formed in it, as it may be formed with a greater or less number of grooves, and be formed of other transverse section,
so long as it is made to fill as nearly as may be the cap, and has long as in duction of this cartridge Mr. Lancaster commenced legal proceedings against Mr. Daw on the ground that his patent, of which he e was an infringement He lost his case, however, for it was ascertained that Bellford's French specification had been deposited in the Bodleian Library only a few days before it was patented in this country. with Mr. Daw for the purchase of his patent, for during the proceedings in Lancaster v. Daw, Messrs. Eley informed Mr. Daw that they had made cartridges similar Lancaster's claim they would be happy to make arrangements for working the Schneider patent. Mr. Daw Messrs. Eley with his cartridges. In 1864 Messrs. Eley again took up the Pottet cartridge, and this time they also availed themselves of the triangular anvil, but by scooping out the sides they gained more space for the passage of the gas without sacrificing the rigidity of the anvil. In February, 1865 , they issued a circula, announcing that they
were supplying breech-loading cartridges on the Lancaster and other systems, and after some correspondence in which they claimed that they had manufactured cartridges on a Mr. Daw applied tor an injunction to restrain the alleged Mr. Daw applied tor an injunction to restr
infringement. The accom-
 infringement, The accom-
panying engravings repre
sent the anvil of Schneider
patent and that manufactured by Messrs, Eley to
which Mr. Daw took excepwhich
tion.
As we previously stated,
the Vice-chancellor ruled
 that Mr. Lancaster's expe
riments could not be taken

Later on in the year Mr. Daw took umbrage at what he considered an infringement-if it be possibleto use that term in connection with the Government of patent. He accordingly wrote to the Secretary of State for War in October in the same year, calling his attention to the similiarity of the two cartridges, and the method of manu facturing them, at the same time declaring that the manu facture of the Boxer cartridges by machinery at Woolwic clashed directly with his patent, and asked for some recog nition in a pecuniary sense. In reply, Mr. Daw was
requested to furnish the authorities at the War Office with requested to furnish the authorities at the War oning pre copies of Colonel Boxer's and his specifications, having previously marked those parts which he considered to be similar; this he did and was subsequently informed that the Government saw "no grounds for interfering in the matter." Meanwhile Messrs. Eley wereissuing to the anvils cartridges in wbich they were using two thinner secured thich amounted to nearly a square, and certa 1 "firm bearing" Ascertaining all nearly as might ine tituted fresh pro ceedings in September, and applied for a further injunc-
 tion. The accompanying employed in Messrs. Eley's new cartridge. Messrs. Eley were restrained from using
a solid square anvil by the $0 \square$ ferable to use two Pottet onvils, which, as Pottet's patent had Colonel Boxer gave evidence from which the following extracts are taken:-
 I am also acquainted with the system adopted by Messrs. Eley
Brothers, three of the above-named defendants, by using a double anvil, each of the Pottet form. In addition to all the advantages
ane several other advantages attending the adoption of this improvement among them. One is that there is much less likelibood of a
miss-fire, where there is any carelessness in the manufacture of the miss-fire, where there is any carelessness in the manufacture of the raults of the workpeople detected, and is not open to the probability of the anvil being put in the cap the reversed way. As com-
pared with the cylindrical, longitudinally-grooved anvil (Daw's), I pared with the cylindrical, longitudinally-grooved anvil (Daw's),
consider that it is a great inprovement, and far preferable to that system. The cylindrical, longitudmally-grooved anvil (Daw's) litting, as it does, the cap, and which is more liable to block the chamber, thus causing a missfire and escape of gas round the cap. It (Daw's) is also liable to the grave delect of being able to be placed in the cap the reverse way by the carelessness of the workmen, and the result must be a miss-are. The extra weight on the sharp point will cause acci-
dental explosion, and which, to my knowledge, has occurred even with a single anvil (Boxer's) when the carrridges have been subjected to rough usage, and the cylindrical anvil (Daw's) would be much more liable from its comparative great extra weight. And,
lastly, the Schncider (Daw's) are much more costly to manufacture than the Pottet anvils-i.e., Boxer's and Eleys'-I should think
about three or four times the expense.
We do not agree with Colonel Boxer in his statement that the Daw anvil is a moditication of the Pottet. The former is round with longitudinal groove, the latter is thin and flat, and without grooves; the former is combined to leave but little space for the passage of the flame from the cap, while the avowed object of the latter is to give as much room as possible. Mr. Daw states that the manu-
facture of his anvils from the cylindrical wire is a much facture of his anvils from the cylindrical wire is a much easier matter than the manufacture of the flat Pottet anvils, which have to be stamped out from sheet metal by dies. We understand, and it is only reasonable to suppose that
it would be so, that these dies soon wear, and that the it would be so, that these dies soon wear, and that the resulting anv
We think the objections put forward by Colonel Boxer with regard to the respective prices of the anvils, are somewhat hypercritical, and we are not inclined to attach much importance to his statement that the extra weight of the Daw anvil over that of Messrs. Eley is dangerous as inducing explosion. Nor should we imagine that there is much to choose between the risk of inserting Daw's anvil the reverse way, and the trouble incident upon having to insert two anvils instead of one, as in the case of Messrs. Eleys patent.
Mr. Daw considers-not without reason, we think-that Colonel Boxer, as patentee of a similar cartridge to his own, and therefore a rival, should not have been called upon to give evidence in a case in which, to some extent have shown better taste on Mr. Daw's part if he had re frained from alluding in the way he has done to the report made by the Colonel to the Home-otice with regard to Messrs. Eley's premises in Gray's-imn-road
Our space forbids us giving more of the evidence ad duced on the trial; suffice it to say this time Messrs. Eley came off victorious. The remainder of Mr. Daw's pamphlet is occupied with diagrams and letterpress illustracing between the various systems of cartridges in dispute.
We believe it is admitted that the Daw cartridge is equal lighter superior, to the Government ammuis lighter, and Mr. Daw assures his readers it is also cheaper to pay the expenses of a Government trial, and it does seem to us, then, unfortunate that such a remedy should not
be adopted. If the cartridge is not equal to the Boxer the
trials will prove it-if it be superior it is evident we should adopt it till we can get a better.

4 Handbook of Practical Telegraphy. By R. S. Culley. Second

 dition. London: Longman[Concludina Notice]
[Concludina Notice.]
"To meet the growing desire for information," says Mr. Culley in his preface, "the leading principles of submarine telegraphy have been introduced" in the present
edition of the work. Indeed, the section on "Underground and Submarine Telegraphs" will be to the student one of the most interesting portions of the work, opening
out, as it does, a broad and comparatively new field of investigation hitherto explored only by the few. Mr. Culley himself is here perbaps not so thoroughly master of his subject as in the preceding sections on overland telegraphy, and might advantageously have consulted, in addition to his other sources of information, the "Notes on the Electrical Construction of Submarine Cables," published in our issue of December 22nd, 1865, and those in other numbers of this journal. The author's principal authority in this section, viz, the Government Report on date and though Mr. Culley has by no means exclusively confined himself to this source, he has omitted to notice several more novel principles of the utmost importance in the determin submarine telegraph construction-such as in specifying the relation $\frac{D}{d}$ between the diameter of a core and that of its conducting wire, and the mode of calculating equivalent thicknesses in the case of dielectrics
differing in the property of specific inductive resistance differing in the property of specific inductive resistance.
The method of testing the electro-conductive quality of
amples of copper wire is so simple and so useful, both to samples of copper wire is so simple and so useful, both to manufacturers and telegraphists, that it may be well here
to quote it. In the appendix to the work Mr. Culley, to quote it. In the appendix to the work Mr. Culley,
amongst a number of useful tables, gives one specifying amongst a number of useful tables, gives one specifying
the resistance, in ohmads, of wires one foot long, and weighthe resistance, in ohmads, of wires one f
ing one grain, at various temperatures:
"If a quantity of soft copper wire is purchased on the condition
that its conductivity shall be, say 80 (pure copper being 100), and
 ascertaning that the gauge is correct. Let the sample weigh
10,000 grains, or 100 graing per foot. Ascertain the temperature 10,000 grains, or 100 grains per foot. Ascertain the temperature
of the room, and refer to Table 10 for the specific resistance at
that temperature of one foot of pure soft copper weighing one that temperature of one foot of pure
grain.
Let the temperature be 59 deg. Fah.
Let the temperature be 59 deg. Fah.
One foot grain of pure soft wire at 59 deg. has
a specific resistance of

0.2186

Then the resistanoe of one foot grain of the re$\underline{0.0437}$
Then the resistano

quired quality is | 0.2623 |
| :--- |
| $0-2623 \times 100$ |
| 20 |

per foot... $=2: 623$ Ohms." Mr. Culley refers as follows to the two insulating matetion of submarine lines :
"Percha is practically indestructible when under water, and insulates well enough for all purposes at ordinary temperaturues; but as
it becomes soft, and also loses in great measure its insulating power, at about 100 deg., it is unsuitable for hot climates. Hooper's smeterial will bear boiling without injury, and does not decreas
tance with increase of temperature as rapidly as percha."
We think that electricians will ultimately modify the now prevalent opiniou that an insulating material of com-
paratively low conductive resistance may be "good paratively low conductive resistance may be "good
enough" for all purposes, or, in other words, that any increment in the property of specific conductive resistance is, beyond a certain point, of no practical moment. This opinion is based upon a proposition which, within certain limits, is apparently verified by practice, and which has
been very generally accepted as a law, viz, that an increase been very generally accepted as a law, viz, that an increase
in the electromotive force of the battery employed in signalin the electromotive force of the battery employed in signal-
ling (which may be rendered safely practicable by an augmentation of the conductive resistance of the dielectric) does not affect the degree of rapidity attainable in the
transmission of the signals.* This is by no means strictly transmission of the signals.* This is by no means strictly
correct, as would be seen by working through either of the correct, as would be seen by working through either of the
Atlantic cables with one cell of Daniell instead of twenty, albeit the electromotive force of the one cell is ample for the purpose of obtaining a clearly indicated signal. What is termed "the height of the electric wave," the difference
of the tensions at different points of the conductor, has in point of fact considerable influence upon the degree of rapidity attainable in signalling. The current at the distant end of the cable gradually grows in intensity until it is sufficient to produce the signal; and, in the ordinary method of working, a given intensity of current will necessarily be obtained in a less period of time with high
battery power than with a low power. To render battery power than with a low power. To render
this perfectly clear, let us suppose that the given this perfectly clear, let us suppose that the given a certain electromotive force; we should have to
charge the cable fully to the corresponding tensions before a signal could be obtained. Let the electromotive force of the battery be now doubled; we shall obtain the given intensity of current long before the cable is charged to the But, as the telegraph electrician is well aware, it takes no But, as the telegraph electrician is well a ware, it takes no
longer time to charge a cable with high battery power, to the maximum corresponding tension, than with low battery power, to the maximum tension corresponding in this casemotive tension of the source has a very appreciable influence upon the practicable speed of signalling; and in the more modern and complicated methods of working the influence
of the "height of wave" is at least as considerable. The of the "height of wave" is at least as considerable. The
degree of electromotive tension which it is practicable or degree of electromotive tension which it is practicable or
expedient to employ in working a submarine line being

limited only by the conductive resistance of the dielectric it follows that the latter can never "insulate well enough where greater speed of transmission is of moment.
Entering upou the important question of the inductive or electrostatic capacity of cables, Mr. Culley contents himself with quoting Professor Sir W. Thomson's formula for the capacity of a given length of cable, without attempting conductive or in logaive of hewrssion for the resistance conductive or inductive, of is lised cylinders of dialectric-
upon which this formula is based-may be derived from the expression $\left(\frac{l}{8}\right)$ for prismatic resistances, in which l is the length of the conductor or thickness of the dielectric and s the sectional surface. The omission of any theoretical explanation of the formula in question is to be regretted, for, as our correspondence columns have recently evidenced a very grave misconception exists in relation to it-certain
electricians not being aware that it is an accurate "expres sion of phot being aware that it is an accurate "expres "artificial contrivance." Moreover, an explanation of the formula would have shown that though, in the expressio
$\frac{\mathrm{I}}{\text { Nap. } \log } \frac{\mathrm{D}}{\mathrm{d}}$ for the electrostatic capacity of a cable, *
Professor Thomson-for reasons dependent upon the coof which the bese is 2,71828 , the simpler and more senve
nient formula $\overline{\log \frac{D}{d}}$, in which log. indicates the common
logarithm with the radix 10 , will answer with equal accuracy the purposes of the practical electrician. This
will be obvious when it is considered that the formula is not required to capacity of a cable, but simply to determine the ratio between the capacities of any two cables, and that the ratio of the Nap. log. of 3 to the Nap. log. 9, for instance, is the same as the ratio between the common log. of 3 and of 9 .
A little further on we notice what is probably a printer's error, which has escaped the author's observation. It is stated that "If a thickness of coating, t, give an inductive capacity of 3 , a thickness $t+t \frac{\mathrm{D}}{d}$ will reduce the capacity to 2." This is not the case; the capacity would be reduced By substituting 4 for 3 , in the first value for capacity, the example given by Mr. Culley, and ascribed by $h i m$ to Mr. Varley, may be made to read correctly.
The rule here referred to follows as a consequence fron the logarithmic expression for inductive cansacilyence from reciprocal inductive resistance, in the case of hollow cylin ders of dielectric, such as the coating of a submarine wire Where the diameter d of the wire is constant, and taken as unity, the inductive resistance, other things being equal, is proportionate simply to the log. of D , the diameter the insulated core. Or, $\mathrm{R}=\log$. D.

Let $\mathrm{D}=2$, then $t=0.5$, and $\mathrm{R}=\log .2=0.301$. (1)
To halve the electrostatic capacity, or, in other words, double the value of R , a thickness of coating is require equal to $t+t \times \mathrm{D}=0.5+0.5 \times 2=1 \cdot 5$
Then $t^{\prime}=1 \cdot 5, \mathrm{D}^{\prime}=1 \cdot 5 \times 2+1=4$,
and

$$
\mathrm{R}^{\prime}=\log \cdot \mathrm{D}^{\prime}=\log \cdot 4=0 \cdot 602
$$

Again to halve the inductive capacity, the thickness must become $=t^{\prime}+t^{\prime} \times \mathrm{D}^{\prime}=1 \cdot 5+15$
Then $\mathrm{D}^{\prime \prime}=7.5 \times 2+1=16$,
and
$\mathrm{R}^{\prime \prime}=\log . \mathrm{D}^{\prime \prime}=\log .16=1 \cdot 204$.
The values for R , with a given length of cable, express The rule that, to double the inductive resistance of a cable, by augmenting the thickness, t, of its insulating covering, an additional thickness must be added equal to t multiplied by the ratio $\frac{\mathrm{D}}{d}$, has not very frequently been given, and has almost invariably been expressed or exemplified incorrectly, much to the disadvantage and perplexity of the
student in practical electricity student in practical electricity
At page 226 we notice a passage which would almost
lead us to suppose that Mr. Culley had misapprehended the law of induction, as applicable to submarine cable and which at all events is likely to lead to a complete misapprehension of this law on the part of the pris reader of the work. Mr. Culley says:-"In cables of similar length and of similar materials, but of different dimensions, charge is inversely proportional to the $\log \cdot \frac{\mathrm{D}}{\mathrm{d}}$,
and directly proportional to the surfaces under induction; charging ends, with their distant ends insulated the charge charging tnds, would have been obtained had they been is equal to what would have been
The statement relative to the effect produced when several cables are simultaneously charged under the conditions specified is perfectly correct; but the "surfaces under induction" may vary in the case of single cables, of
similar length and materials, and in which the value of $\log . \frac{\mathrm{D}}{d}$ is in each case the same. Now what Mr. Culley,
probably by inadvertence, here asserts is, that the charge in such cables would be directly proportionate to the surD might $=$ lin., and $d=0 \cdot 354$ ords, a cable in which a given battery a greater quantity of charge than would an equal length of the Malta-Alexandria cable, in which $\mathrm{D}=0.457 \mathrm{in}$., and $d=0.162 \mathrm{in}$., the ratio $\frac{\mathrm{D}}{d}$
both cases the same. Nothing can be more erroneous: cable" one yard in diameter, with a conductor 5.832 in diameter, would have precisely the same charging capacity as a similar length of the Malta-Alexandria cable ! The
formula \log. $\frac{D}{d}$, for induction in cables of similar ma-

- In et:- The specitc indactive capacity of the material employed, divived
by twice the Napierian logarithe of the ratio of the diameter of the insulated
core to that or the conducing wis
terials and length, is absolute; no other condition than that which is here expressed influences the amount of inductive charge at a given tension. It is of considerable importance that the telegraphic learner should clearly realise this fact the more so that, from the manner in which the above expression is generally enunciated-apparently as an empirical formula-there is generally in his mind a lingering dependent upon the extent of the surfaces in the Leyden condenser constituted by the cable, instead of upon the mean ratio of the surfaces (8), of an indefinite number o layers of dielectric of varying surface, to their aggregate thickness (ℓ) which ratio is concisely expressed by log. $\frac{1}{\sim}$.
Mr. Culley states that "no unit of capacity has yet
been determined, but a standard is constructed for eack been determined, but a standard is constructed for each tinfoil case. It is generally a condenser made of shed in paraffin, adjusted by trial t take the same charge as a mile of the cable, and each mile of coil is tested as soon a covered to ascertain if its capacity agree with the condenser." The author is mistaken in asserting that a standard unit of capacity has not yet been determined. The unit in question was definitively chosen by the Committee on Electrical Standards appointed by the British Association; though weare notaware that condensersor Leyden jars of the posed by the Co as the case of the B. A. unit of electrical resistance. Mr. Culley's statement shows evidently, however, that the standard unit of capacity has not yet come into practical use amongst telegraphists generally
The present section, on submarine cables, contains a considerable amount of information, condensed into twentytechnical literature is well handert, almost a novel one in our unnecessary complication. Without bringing forward many novel or striking views or original facts, Mr. Culley has summarised for the benefit of the student of telegraphy nearly all the important data which have been obtained in connection with this branch of applied science. And henceforth our telegraphic employés will have no excuse for being in any way behind their continental brethren in the knowledge of facts relating to the marvellous instrument of civilisation which so faithfully performs the bidding of the intelligent operator who has studied its organisation and can find his own remedy when a "screw is loose." The notes and tables at the conclusion of the work constitute a valuable addition, and, being to all appearance most carefully compiled, will, we have no doubt, be productive of many tacit but sincere compliments to the author in the shape of well-thumbed copies of his book. We must not omit to notice, in the appendix and notes, a valuable little the proper pr. W. H. Preece, on the method "To calculate the proper proportions of the core of a cable to provide for minute" Mr Preece has arrived at the concluions pe with copper and gutta-percha as at present produced by with copper and gutta-percha as at present produced by
the manufacturers, the best practical value that can be given to $\frac{D}{d}$, for a given value of D, is $\frac{10}{\sqrt{10}}$, or $3 \cdot 16$.
In conclusion, we may state that the work, which extents to nearly 300 pages, is neatly printed on good paper, and illustrated with a number of diagrams and woodcuts, which both illustrate and adorn some of the foreign treatises on the same subject, answer perfectly the main purcomprehension of the various arrangements and conditions which are adverted to.

The Mining and Metallurgy of Gold and Silver. By J. Arthu Prilups, Mining Engineer. London: E. and F. N. Spon 1867
Tre author of this handsome volume has brought a great amount of valuable experience to bear on its production, and has supplied a welcome addition to the literature
of the subject. The first part of the work treats of gold of the subject. The first part of the work treats of gold in all its aspects, its modes of occurrence in nature, the chief goldfields of the world, with description of the
methods employed for the extraction of the metal, and methods employed for the extraction of the metal, and statistics of the annual yield. The most recent modifi cations of the metallurgical processes for the extraction of gold are likewise considered. After a chapter on the assay of auriferous ores and gold bullion, the author proand preparation of ideas, which sare treated in a manne corresponding to that adopted in the case of gold. The argentiferous ores and the chief silver mines of the Old and New World are described, and the various processe employed in the metallurgy of silver, including its separation from lead and other metals, are fully discussed. The subject of silver assaying concludes the volume, which, it should be mentioned, is illustrated with a photograps. We shall shortly give a detailed review of this useful treatise.

Interesting Experiments with Coal gas on Safety Lamps, -On Monday last a large nnmber of those interested in mining and
number of experiments with minerrs safety plamps. It witness a
membered that a few weeks ago a number of experiments were made at the gasworks at Barnsley. It was suggested that the The apparatus was fixed into the flue of the engine chimney, whilst
thegas was conducted from the escape pipe to asmall receiving tank,
and from thence into the apparatus. The lamps experimented upon and fas was conducted rrom the escape pipe to a smail receiving tank,
and from thence into the eapparatus. The lamps experimented upon
were Stephensons, Davy, Clany, the Mozart, and what was desig.

nated the "Cons, | and |
| :--- |
| were |
| nated |

nat
Lon
sho
gho
gas
Clan
wel
safe
safe

THE BRITISH ASSOCLATION. NExT Wednesday the members of the British Association will
hold their annual gathering, which this year is to take place in Dundee. This town is very rich in historical associations, for Edward I. burnt a large number of women and children in an
old monastery there, Wallace was educated in Dundee, Bruce once made the town his residence, and he was declared king of
Scotland therein, James V Mary Oueen of Scots and Scotland therein, James V., Mary Queen of Scots, and James VI visited it. Dundee was pillaged and burnt by Montrose, it was
the temporary residence of Charles II., it was stormed by Gen. the temporary residence of Charles 1 , it was stormed by Gen.
Monk, whose soldiers massacred the inhabitants right and left for several days, Graham of Claverhouse besieged it and was
beaten off by the defenders, it was entered by the Pretender in
in 1716 , and occupied by his followers in 1745. . Thus archaoolo-
gists and politicians will have a rich field before them in the gists and politicians will have
town of Dundee and its vicinity.
As regards the modern aspect of the town, it ranks next to business in linen and linen yarns, importing large an extensive flax, hemp, and jute. It is situated upon an arm of the sea, the
Firth of Tay, about four miles from the German Ocean, and it is backed by hilly and picturesque scenery. The harbour usually contains a good show of shipping, and the town rather more
smoke than a stranger would like, which smoke is belched forth by several tall chimneys. Dundee has about 100,000 inhabitants, who are all in a lively state of preparation for the advent of the
British Association. It likewise has a Provost to rule over it, a
least the days of old, at all events, it certainly had a Provost, fo memory dimly furnishes a picture of a Dundee Provost, who
died and was buried, and left $£ 400$ in his will for the composer of a good epitaph to be inscribed over his remains. The four
executors, ,o the legend states, resolved to compose the epitaph themselves, since it would be a pity to let the $e 400$ go into the
hands of strangers, but as they were not of a literary turn of mind, it was unanimously resolved that it should consist of four
lines only, and that one line should be written by each. The task of the first executor was comparatively easy, for he took up
his pen and wrote, "Here lies John Anderson, Provost of Dundee.", The second spent half a day in deep thought, as he had to make a rhyme, but at last he wrote, "Here lies him, here
lies he." It did not occur to the third to change the rhyme, so
his was a terrible task; he took physic, lay awake in deep thought all night, and finally wrote, "Hallelujah! hallelujee !" ments of education, and added the line, "A, B, C, D, E, F, G." in Dundee, so archæologists are earnestly requested to search for not but excite the warmest interest in the breasts of the members of the British Association.
One of the most interesting features of the forthcoming week
in Dundee is one not entered in the official programme of the British Association, namely, an experimental lecture to working
men on "Matter and Force," by Dr. John Tyndall. The creation men on "Matter and Foree, by Dr. John Tyndal. The creation
of a taste for the study of physical science, ignorance of which is
such a prominent feature of the system of education in thi such a prominent feature of the system of education in this
country, will perhaps be more forcibly promoted in Dundee by
this popular movement of the prince of scientific lecturers than by any other proceedings of the Association. But Dre Tyndall,
Mr. Balfour Stewart, and all the other philosophers who are deeply versed in the phenomena of heat and molecular physics,
have already a terrible and unexpected rival in the field. The
 dark rays of intense heat into his eye and lick red-hot pokers ;
but the great Rel Mueab, the Fire King, despises such petty performances, according to the following paragraph from the Dundee
$\boldsymbol{A} d v e r t i s e r ~ o f ~ T u e s d a y ~ l a s t:-~$ Advertiser of Tuesday last :-
THE FIRE KING $A T$
THE Fire Kivg at The AlhasrbRA MUsic Hall.-One of the
most remarkable performers that ever appeared in Dundee is at present astonishing the large audiences that nated inh Dhtly assembee ise at
this favourite musichall. The gentleman to whom we efer is Rel Mueab, the Fire King, a native of Russian Poland, who goes through a variety of the most marvellous feats we ever witnessed. He is a handsomely-made young man, and possesses apparently
great muscular strength. He brings to the stage with him a sort of forge, which he employs in heating the iron used by him in
doing his performances. He first makes a strip of iron, about the eighth of anincom thick, red hot, and then bites off ppeces of it with
his teeth. This is a wonderful enough feat, yet it is not nearly so surprising a those which follow. He next pext pours a bottle of olive
oil into a cauldron and heats it over the fire-inded oil into a cauldron and heats it over the fire-indeed, ho makes
the oil boil. After it has been boiled he drinks two glasses of it, and does not seem in any way inconvenienced. He next makes and hot the end of what may be considered a miniature spade, and
rubs it over his legs, arms, and face. A large flat piece of iron is subjected to the heating operation, and is then laid on the stage. Rel Mueab steps over it once or twice, and afterwards dances on it.
There was no deception practised on the audience in any of the There was no deception practised on the audience in any of the
performances. The metal from which the pieces were bitten off, when put into a pail of water, showed unmistakably that it had
been well heated, while the small bits bitten off and handed round among the audience, were still very hot, and bore the evident marks of the performer's teeth. The oil was also in a condition peculiarly suitable for scalding purposes, and the hissing sound
produced by red-hot metal comin into contact with stance was clearly heard when Rel Mueab danced with his bare feet on the iron. Altogether the performance created a great sen. sation among the audience
When
When the popular lecture of Dr. Tyndall comes off it would be as well for the Provost of Dundee to provide a plentiful
supply of white-hot pokere, which could first be licked by Dr. Tyndall and then eaten by the Fire King. If Professor Sir Wirbel Bergung motion, and explein that the plation with a Wirbch-Beweegung motion, and explain that he does not believe in
solid matter, and Professor W. Allen Miller should take a photograph of the scene with the invisible light of the extra-violet end of the spectrum, the inhabitants of Dundee wil own that they
never witnessed such a lecture before, and are not likely to do so again.
Dundee is twenty or thirty miles from some of the finest
scenery in the Scottish Highlands, within easy communication by rail. The programme of the forthcoming proceedings of the British Association has already appeared in our pages.

METALS, MACHINERY, AND MANUFACTURES, PAST AND PRESENT.
Nor a few of the English visitors to the Paris International Exhibition-practical and scientific men-have come home discon-
certed and cast down by the evidence it has seemed to present in. corted and cast down by the evidence it has seemed to present in-
dicative of England as a manufucturing country being a loser in
tho world's competitive race . In the world's competitive race. In textile and fictile manufactures
France and Belegium have iong been ahead of us in the higher France and Belium have long been ahead of us in the higher
qualities of production, and even in the lower classes of cotton,
silk and woollen goods, more hargery consumed by the great bul
of the peoples of various parts of the world, they have been drawin

all competitors. Now, however, it is feared that this master key
is to be wrested from us, and that continental manufacturers are about to become independent of us for the supply of the machinery which we have hitherto exported to them, and by means of which heir manufacturing industry in various departments has been so golden eggs, buthave kept the goose which has laid them. Now it seems supposed, they have got a goose of their own, and will not only not need to draw from our basket, but will go into the same
markets to supplied by the evidences of mechanical and engineering progress made upon the continent of Europe is not unneeded, and the may
warning we receive not to rest content with laurels that may
be withering will prove saly ity if Inventive genius is challenged to sleepless and sustained activity and the exeroise of its best powers; and, above all,
employers and employed are admonished with trumpet tongue to employers and employed are admonished witr rumpet tongue
set their house in order, and to settle on a permanent and mutually satisfactory basis the moot points in the relations between capital and labour which lie at the root of our continued prosperity as
nation. Whether or not masters and men will adopt the motto and cordially act upon it, the conditions and results expressed cortainly attach to their mutual relations-"United we stand, divided
we fall." To parley or hesitate is to be undone; better keep now than seek anon-England's division and extremity will be the foreigner's opportunity,
What the returns of
current year may show it is of course imporssible at present to pre iict. When the time may come-we hope it may never come-
when "Ichabod" is to be written upon our factories and work shops, we know not, but up to the end of 1866, at any rate, that
time hand not come, and unless a galloping decline has commence time had not come, and uncess a gallopiag decoline has commenced
in the year 1867 the history of the past should encourage us to take heart of grace for the future, and to beliove that as a nation
of manufacturers and shopkeepers we shall not be defunct for yet awhile.
By an almost unbroken series of annual augmentations the value
of the imports and exports of the United Kingdom have incroased from $£ 266,210,145$, or $£ 9$ 14s. per head of to the podulation of the
United Kingdom in 1854, to $\sum 544,011,453$, or $£ 18$ per head, in 1866; the exports in the latter year amounting to ℓ eer heac, ${ }^{2300}$ 1866 it was $£ 1,750,492$, being a decrease as compared with 1865 but an increase upon 1864 and all preceding years. The value of
machinery of other sorts exported in 1852 was $£ 913,138$; in 1866 i machinery of other sorts exported in 1852 was
was $£ 2,998,692$, a decrease upon 1864 and 1865 (confessedly signif The iron, pig, and pudded exports amounted in 1886 t
 to $£ 1,129,761$. The total value of iron and steel exported in 1866
amounted to $£ 14,829,369$, as against $£ 6,684,276$ for 1852 , and higher than any amount since that year. In the exports of
copper and other metals the increase has been inconsiderable excepting in copper, bars, rods, sheets, and rails, the value of
which in 1866 was \&1,199390, or nearly double what it was in
1852. The value of the coal, cinders and culm exported in 1859 1852. The value of the coal, cinders, and culm exported in 185
was $£ 1,372,114$, in 1866 it had risen to $£ 5,044,09$.
Turning to some of the tially affected by improvements in machinery, it appears that the cotton piece goods exported in 1852 anounted to $1,524,256,91$
yarrss ; 1866 the quantity exported was $2,575,667,256$ yards,
nearly nearly fifty times the circumference of the globe! Manchester a
well as Mulhouse evidently continues to prosper well as Mulhouse evidently continues to prosper. The only year
from 1852 to 1866 in which a greater quantity was exported was
1860 , when it reached $2,776,218,427$ yards. The linen piece goods 133,192,627 yards; in piece good 1866 the exporthd to $254,933,5311$ yards. Betwen the one year and the other
rehe quantities exported were increased, respectively, of woollen
the the quantities exported were increased, respectively, of woonlen
cloths from $26,406,828$ to $34,520,340$ yards, of flannels and blankets from $9,046,677$ to $14,419,298$ yards, of worsted stuffs from
$127,793,552$ to $224,322,174$ yards, and of carpets and druggets from 2,280,373 to $7,613,609$ yards. Although Lyons may be thriving
and Coventry and
anacolesfield may be languishing, we are stil manufacturing silk goods for home consumption and for exporta tion, the value of the silk manufactures in 1852 and in 1866 respec-
tively having been $£ 1,156,305$ and $£ 1,317,529$. Worcester and they, nevertheless, get quit of a goodly quantity of their produce in the world's markets, and exported goods last year to a highe value - $£ 1,652,609-$ than they ever did before; the value of the
exports and earthenware in 1852 was $£ 1,151,897$. Broadhead and exports and earthenware in 1852 was $£ 1,151,897$. Broadhead an
Co. have not had time to bring Sheffield cutlery into disrepute, and goods manufactured with false trade marks have not yet superseded uine article, the value of the hardwares and cutlery exported it was $£ 2,691,697$. The exquisite glass manufactures known a
it their price; our manufactures of flint, plate, and other kinds of glass are nevertueless on the increase. The value of theso manu
factures extorted in 1852 amounted to $£ 378,827$; by increase it had reached to $£ 801,169$ in 1866
The estimated value at the place of production of the following and $\ell \ell 4,537,646$ and pig iron, $\ell 7,764,555$ and $\ell 11,774,220$, total of coal, iron, and other metals, $\ell 29,155,701$ and $\ell 40,310,933$.
Some other figures of a reassuring
Some other figures of a reassuring nature may be quoted
show the improved condition of the people. In 1852 the received by the trustees of savings banks amounted to $\ell 7,281,177$, and in 1866 the amounts received from depositors amounted to
£11,795,639, including the Post-office savings banks. The capital of the savings banks in 1852 was computed at $£ 31,754,261$, and in the inspections of the primary schools in Great Britain was
 of Roman Catholio schools 1 the numbers rose from 62,310 in $185 /$
to 171,230 in 1866 ; and in Ireland, from 473,214 to $1,287,604$. The persons committed for trial in 1852 and in 1886 were respectively in
England and Wales, 27,510 and 18,849 , in Scotland 4027 and 3003, and in Ireland 17,678 and 4326. The reader is cautioned against
mistake-the smaller numbers are for the later year, 1866, The
gross estimated rental of property assessed to
was $4666,077,676$, in 1866 it was $\ell 110,079,308$
It is beyond our province to comment on politics except in so far perity of the country. We do not care to speculate as to the probable proportions of so-called Liberals or Conservatives likely mous number to the politically enfranchised. It sunh an enordoubted that the important question of public instruction will be quiekly and greatly promoted. Mr. Lowe puts the matter harshly
when he tells the House of Commons the when he tells the House of Commons that it is absolutely necess-
ary that its new masters should "learn their letters." Working men will note the sardonic expression, and probably profit byit
although they can scarcely be expected to be grateful for it. Unathough they can scarcely be expected to be grateful or it. Un
less the working olasses are to belie their professions and their ante cedents, popular education will be one of the first practical questions upon which they will concentrate their newly acquired power.
In one of the many educational agitations, of which Manchester In one of the many educational agitations, of which Manchester
has been the centre in past years, occasion was taken to canvass the has been the centre in past years, occasion was taken to canvass the
working classes in almost all parts of England. Duly adver-
tised Working classes in ass were held in numerous populous towns
tised public meetings
and districts throughout the country, and a vote was taken tised public meetings were held in numerous populous dow
and district throughout the country, and a vote was taken
on a resolution for the establishment of a complete system of free schaols,
authoriti
authorities, the instruction in such schools to be secular or un-
seotarian, and the religious instruction to be left to parents,
ministers, Sunday-school teachers, or such deputies as the parents
was freely offered by voluntary educationists on the one hand, and
by the advocates of religious daystohool education on the other There was, notwith tanding and edication on the other. In favour of the proposition, and it may reasonably be believed that the opinions so strongly held fifteen years ago have become
intensified in the interval- that the seed sown then will soon fructify in the army of working-class voters making education a hustings question, and in their cutting the Gordian knot educational difficulty. With primary schools where they
needed, freely accessible to all classes, well conducted by train nd efficient teachers, and under the control of responsible local ther managers, the latent intellect of the country would bo别 would lead to mental culture, induce a higher moral vould revolt from crude, cowardly, unjust, and illogical expedients
or the promotion of class interests. As regards skilled workmen in various branches universal elementary schools would beget echnical schools-would establish and promote free scientific and popular libraries, and would, in fine, add so much dignity, po eed and truth, the "glory of the world and the envy of surround ing nations.
DRAUGHTSMEN'S BENEVOLENT ASSOCIATION THE following is a copy of a circular which has been forwarded
the draughtsmen of the leading engineering firms in the king. "Sir,-You are, perhaps, aware that considerable correspondence has lately taken place in the columns of The Engineen with reference to the formation of an "Assista
The time seems now to have arrived when something of a more lecided character than newspaper correspondence or editorial nd it has been is required in order to set the matter fairly anoat, in the movement, and particularly of delegates from as many as early day; such meeting to be presided over by some well-known and universally respected member of the profession. The subject could then be freely discussed, and, if desired, a committee be
appointed for carrying out the wishes of the meeting, and for romoting the general success of the movement.
teps have been takn, and the time and place of such mecessary have been determined on, the invitations will be issued.
In the meantime may I also venture to commend to your earnest A nd superannuation, also a provision for the widows and orphans of deceased members, and a scheme by which the children of
assistant engineers, surveyors, and draughtsmen would be enabled to obtain a good sound education at a very reasonable rate. Of the many details involved in these matters, you will easily wanted is to arouse general attention to the question. We may then safely reckon on securing a good and influential meeting of
those who are interested, and if this be followed by a hearty coand will be all concerned
Before, however, we can with any propriety ask any of our
leading engineers for their counsel and support we leading engineers for their counsel and support we ought to have by assistant engineers, surveyors, and draughtsmen generally, not May I, therefore further request your associates, and that you will kindly oblige me with a line as early as possible, stating what are the views you entertain on the question, and whether I may hope for the pleasu

I remain, yours truly,
$\begin{array}{ll}\text { Signed) } & \text { R. M. Bancroft. }\end{array}$
P.S.-By the kind permission of the proprietors all letters may, the proposed Assistant Engineers', Surveyors', and Draughtsmen'
Benevolent Society, office of THE ENGINEER, 163, Strand, London,

The Society of Engineers.-The council of the Society have obtained permission for a visit of the society to the works of
Messrs. J. Penn and Son, at Greenwich, on Friday, the 13th of September. Members and associates who purpose joining th party are requested to communicate with the secretary, on or
before the 10th proximo. Members and associates to meet at the London Bridge station at a quarter past twelve o'clock, on the
13th of September, to proceed to Greenwich by train leaving at $12.31 \mathrm{p} . \mathrm{m}$
A Self-Lubricating Packing.-Mr. T. Silver, the American known form of marine into this country a remarkably original kind of packing for piston rods. It works entirely without oil, being apparently self-lubri aided by the presnce of condensed steam. The packing, put into the stuffing-box in the ordinary way, simply consists of a plaited of soapstone
A Novel Race.-On Monday morning, the 26th instant, in one made by Mr. Isaac W. Boulton, of Ashton-under-Lyne, having only one 4$\}$ in. cylinder 9in. stroke, the other, made by
Messrs. Daniel Adamson and Co., of Newton Moor, having tw cylinders 6in. diameter, 10 in . stroke, started from Ashton-underLyne at $4.30 \mathrm{a} . \mathrm{m}$. for the show ground at Old Trafford, a distance
of over eight miles. The larger engine, made by Messrs. Adam son and Co., is a very well-constructed engine, and had a gocd with five passengers upon it, passed the other in the first mile, and the houood lead of made by Mr. Boulton ran the first four niles in sixteen minutes The running of both engines is considered very good. On arriva at Old Trafford they tested their turning qualities, and both
engines turned complete circles of 27 ft . diameter, both to right frequently.
The Staveley Coal and Iron Company (Limited).-The states that, notwithstanding the very exceptional year, the inheren value of the company's property has maintained its relativ the last account is $\mathcal{6} 5.7197 \mathrm{~s}$. year, including $£ 96016 \mathrm{~s}$. 1d. from of $£ 610 \mathrm{~s}$. old share and $£ 1$. 1 s . 8d. per new share were paid in The directors recommend a further dividend of $\rho 310 \mathrm{~s}$, on the ol and 11s. 8d. on the new ; to be paid on the 3rd of September next carried fore absorb $£ 22,8086 \mathrm{~s}$. 8d., leaving a balance $£ 552$ to be gratification of the great labour and perseverance of Mr. Mark in opposition to the trades' union. The directors state that they
hat ave agreed to contribute to the Staveley Works Accident pun
a further of $£ 2000$ by four yearly instalments, and after that perio
aqual to 25 per cent. to the amount subscribed by the workmen, and the directors rely upon the share
firming by their authority this gift and contribution.

TECHNICAL EDUCATION IN AUSTRIA. THE Imperial Royal Polytechnic Institution at Vienna, the
rules of which we give below, was established in 1816 for the object of promoting instruection, in the practicical sciences. At first
it formed a kind of preparatory school for artisans, but has since been gradually extended and improved into what may be termed a scientific university. Properly speaking this more e dignified titled
is only due to it since October, 1865 , when by imperial deree it was created a "Hochschule,", power being given to it to grant
diplomas, and the entire couse of education being made strictly
compulsory, whilst aigher seal compulsory, whilst a h higher s.ane of efnowation being was demade strictly fom
students applying for admission. The fees paid by most of the amounting to only about $\ell 5$ per annum, or say $c 9$, includinu a labo
ratory and extent supported by the state, the management being conducted
by a committee of professors, who annually elect from themselves a president-the so-called "Rector" and nominal head of the institution, The salaries of the professors amount to re
spectively 1800,2900, 3400, and 3900 florins per annum. There
are altogether twenty (minorprofessors) ten guages, stenography, sketching, and modedelling, three "Adjunkten"
(special assistants), and twenty-three assistants. An annual sum of 13,000 florins is given by the state for development and sum
penses of the twenty different laboratories and collection penses of the twenty different laboratories and collections, of
which 2000 florins go to the laboratory for chemical technology
 the mechanical technology collection. A Asecial fact worth men-
tioning is that students passing all their examinations with "vorzug sudents liable to military service
 An exceedingly useful being compelled toserveas private soldiers.
bodided in ther excellent system is embodied in the so-called scientifice excursions made atcertain intervals
by the professors and students of botany, zoology, geology, me-
men agriculture, surveging, and mechanical and, chemileal enineerning. In
these excursions various manufactories and works are visited, bo tanical and geological expeditions of great length made ; in fact every means adopted for giving the students a practical as well as
theoretical knowledge whenever possible. It only remains to be said that most of the students enter at about eighteen or nineteen tion of six annual courses in the Realschalen (Government schools where solely technical subjects, entirely excluding the ancient languages, are taught), preceded by four nanual courses in the
Hauptschalen (preparatory Government schools for children). REGULATIONS OF THE IMPERIAL ROYAL POLYTECHNTC INSTI-

Sec. 1. The Vienna Polytechnic Institution is intended to affor a thorough theoretical, and also, as far as possible, practical educa-
tion for the professions which are represented in it by special preparatory divisions.
Sec. 2 . The following divisions exist in the Institution:- $-A$, the
general division, in which those subjects are taubht which general division, in which those subjects are taught which form
the scientife basis of the subsequent special studies; ; , the divi-
sion for civil enfinecring; © C , for bulding; D , for mechanical engineerring; E, for technical chemistry
Sec. 6. The instruction in
in annual terms lasting from 1st of October to the end of July, and partly in biennial terms, the first ending in February, and the
other beginning l st of March. 7. Ti.-Regarding the Students. who are matriculated either for the general divivit that is those the special divisions, and who attend the entire course of oducation according to the proper regulations; and
that is those who only attend certain lectures.
tificates ; they have all the rights connected with attending the tificates ; they have all the rights connected with attending the
Institution, and have to fulfil all the appertaining duties. The
extraordinary students have in general the rights of the ordinary, extraordinary students have in general the rights of the ordinary
butare not admitted to the " rigorosum $"$ examinations (stren gen Priu
fut fungen, sec. 28 ; ; neither have they any right to scholarships. In
the pubbic certificiates they are expressly designated as extraordinary students. Disregarding any special exceptions their duties are the same as those of the ordinary students. All students are sub-
ject to the disciplinary regulations. The ordinary students are
subject, as regards discipline, to the heads of the divisions, the subject, as regards discipline, to the heads of the divisions, the
extraocrinararyt to the rector.
Se.ter as ordinary students into the first
session of the these session of the keneral division who have either-1, absolved the
upper Realshule, or upper gymnasum, with proper cetrificats,
op, 2pased with oood resultsy the " maturitits" examination at a
 educated at a middle school. Gymnasium scholars must
sufficient readiness in geometrical and general drawing.
Sec. 10. A. A long as "maturitits" examinations are not regularly
introduced in the Realschnlen those who are nable to show the proper certificates have to be subjected to an entrance examina.
tion at the Polytechnic Institution. Those mentioned in sec. 9 , heading 2 , must be at least seventeen years of age. The following
are the subjects of the entrance exnmination:- α, arithmetio are the subjects of the entrance examination:-a, arithmetic.
algebra, geometty, plane and spherical trigonometry, analytical
plane geometry; b, geography and history; c, physics; α, natural
 jects from a to e, to the extent taught in the upper Realschulen, are eaccurately detailed in the special programme published by the
Institution. A fee of five florins has to be paid for the entrance
esamine Sec. 11. Students just entering, who wish to be admitted as
ordinary students to higher divisions, have- 1 , to fuifil the general entrance regulations (see. 9), and, 2, , to prove the necessary pro-
ficiency either by legal certificates, or by subjecting themselves to Sce. 12. The following conditions have to be fulfilled by those wishing to enter as extraordinary students: -1 , an age exceeding
seventeen years ; , proof of the preiminary knowlege neeessary
for succeessfully attending the deesired lectures. These proofs must for successfully attending the desired lectures. These proofs must
be anforded either by legal certifictes or by an entrance examina-
tin fee of two florins must be paid.
Sec. 13. The entrance of ord
beginning of the school year. They have to announce themselves personally, on or before the 7 th of October, to the head of the
division which they intend entering, and have to deliver to the same their nationale (written statement of name, age, birthplace, sary explanations. The head of the division examines the written makes, if neceessary, the arrangements respecting the entrance examinations. He then delivers to the applicant an attestation
of his matriculation, in which the division and session into which he has been admitted, as well as the selected subjects, are
detailed. In doubtful cases the determination cespecting the ad-
mission of the applicant is left to the decision of all the professors

Sec. 14. The announcement of extraordinary students has to be made in the same way to the professors of those subjects which
the students wish to attend. For those lectures which are only in the beginning of the second term.

Sec. 15 . As soon as the conditions mentioned in sees. 9 to 14
have been fulfilled, and as soon as the fees stated in sees. 19 to 21 have been fulfilled, and as soon as the fees stated in secs. 19 to 21 ,
have been paid, the matriculation of newly admitted students, as well as the registration of already matriculated students, can as welli as
take place.
Sec. 16.
plan of study deterary duad for the general and special divisione Exceptionally they may be allowed to form another plan, in which case they must obtain the permission of the professors of the in the plan selected, firstly, regard has been taken of the proper sequence of studies depending upon and supporting each other
and, secondly, when the total sum of all the weekly hours for the selected subjects amount to at least eighteen, each two practice or drawing hours being reckoned as one.
Soc. 17. Besides the subjects cont
ordinary student may also attend lectures concerning other mub jects for which he has sufficient preparatory knowledge. The statement of this has to take place either at the announcement
(sec. 13), or at the latest on the 15th of October or 15th of March
(sec. 6), and personally to the rector.
Sec. Is. The students are also allowed, within certain limits, to those fixed in the plan of study.
Sec. 19. Each student has, on first admittance to the Institution,
to pay a fee of five florins. After an absence of one year or more
the same amount has to be again paid
Sec. 20 . Each ordinary
Sec. 20. Each ordinary student, to whatever division he may
belong, and without regarding the number of the lectures he mat select, has to pay a fee of fifty florins for the whole year. This fee selec, has pay a pee paider entire on admittance, or in two pparts, of which
may be
the first is due on admittance, the second at the latest on the 7 th may be
the first
March
Sec. 21. The fees to be paid by the extraordinary students are so
calculated that for each hour per welk during eed bients one florin fifty kreutzers has to be paid, each two practice or draw ing hours being reckoned as one. tures of the assistants, and of the teachers not paid by the Governby the same. by the same.
ste. 23. Broving poverty, and at the same time proficiency,
students may be either entirely freed from paying the fees (secs. students may be either entirely freed from pay
20 and 211 , or only subject to half the charges.
Sec. 24 . From the
during the year and at the end of the same, as well other tasks delivered by the student, the result of his stom thes in the separate subjects is determined. The determination as to Whether a student is altogether proficient enough to advance into
a higher course is left to the divisional committee of professors.
If If a student has failed in the examination of any one subject, ho
will have to prove his proficiency in the subject at the beginning will have to prove his proficiency in the subject at the beginning
of the next session, up to ot the latest the 7 th October, paying for this examination a tax of five florins. If he omits to do this, or again fais, then his further advancement in his studies can only
be allowed if the subject in question is not one the knowledge which is indispensable for the proper study of the chief subjects
in the next course. And in this case only those subjects must be in the next course. And in this case only those subjects must be
attended for which a previous knowledge of the one failed in is pot necessary. But for the advancement rom the general division have been obtained in all the subjects given in the plan of study for the general division. Students who have been compelled to
repeat a course, are allowed to attend single subjects of the next repeat a course, are allowed to attend single subects of the net
folowing course of their division, provided they are able to prove
sufficient preparatory of a subject attended with insufficient result, as well as the repe. tition of a course, is only allowed once.
Sec. 25. Each ordinary stude
Sce. 25. Each ordinary student obtains at the close of the year a
certificate, in which the attendance of, and result in each of the subjects of his division, as well as his general conduct, are specigiven to the certincates, but only for each single subject, are subjects. These latter certificates are the same as those which are
Then iven to the extraordinary students. The result is designated in
the certificates - "excellent," or "good," or "efficient," or "inthe certificates "excellent," or "good, or "efficient, or in-
sufficient." The conduct is designated either-"entirely according to," or "according to," or "less according to the academical
liws," The ordinary students can also obtain certificates of at tendance for subjects not compulsory.
Sec. 26. The resigning the attendan
Sec. 26. The resigning the attendance of single lectures has to be
intimated to the respective professors ; the leaving the Institution to the rector. Sec. 27 . Under the name of guests, males may be admitted to thr eccures on separate subjects, by permission of the respective
professors, who, from their station and other qualifications, entitle the expectation that the objects of the teaching will not be pre-
judiced thereby. iiI.-Regarding the Strict (Rigobosum) Examinations for Sec. 28. The strict examinations are intended to prove the efficiency of the candidate for his profession. They have to show
that the candidate has a complete knowledge of all the subjects of examination, both theoretically and practically, and particularly
of the amount taught in the special professional division. A Siploma is given on completing the strict examination.
Sec. 30 . The candidate for the strict examination has to prove
at least sufficient proficiency in all the subjects contained in the plan of study of the division in question, and also in nationa Sec. 31. A fee has to be paid for the strict examination amounts to 150 florins for each of the divisions for civil engineer-
ing, building, or mechanical engineering; and to 80 florins for the echnical chemistry division. The fee in question has to be paid Secs. 32 and 33 contain further unimportant particulars concerning the striet examination
Sec. 34. Should
Sec. 34. Should the result be insufficiently good, the strict examination can be repeated. This repetition can only take plac once, and only after the expiration of the time fixed by the
examining committee. The fee due for the examination has in Sec. 35. The subjects for the strict examination to the extent aght in the respective divisions are the following: :
B Civil Enginerring Division. -1 . Mathenatics, geometrirical drawing, technical physics, theoretical mechanics, ma-
chinery: 2, practical geometry and higher geodesy, building
meechanics, building construction, road and hydraulic en-
C. Buildiug Division.-1, Mathematics, geometrical draw
ing, technical physics, mechanics, machinery, geology:
practical geometry, building mechanics, building construction,
history of building, road and hydraulic engineering.
metrical drawing, technical physics, mechanics, practical
geometry; 2, general building construction, laws of machinery,
b. Technical Chemistry Division. - Mineralogy,
building of machinery,
and
zoology, general and technical physics, machinery, chemistry, See. 36. The strict exanination may be pansed for more thinn In this case the examination committee may grant a dispensation from examination in those subjects of the next division in which
plas of study for the year 1866-67.
Soth the annual sessions of this division have to be passed by
chanical engineering divisions. Students intending to enter the
chemical division need only pass the first session of the general chemical division need only pass the first session of the general
division ; such students need not attend the geometrical drawing taking instead the lectures on mineralogy and the laboratory prac
tice. geometry, elements of differentina and integral calculus), 10 hours weekly; geometrical drawing, 7 hours; constructional drawing,
hours, inorganic chemistry, 3 hours; zoology, 6 hours (in the winter term); botany, 6 hours (in the summer term); technical
and free drawing, 4 hours. Scond Session.- Mathematics (dif and free drawing, 4 hours. Scond Session, -Mathematics (dif
ferential and integral calculus) 5 hours ; physics, 4 hours; tech
nical mechanice, 5hers. nical mechandics, 5 hours ; practical geometry, 4 phys, 4 hours ; situational
drawing (Situations drawing (Situations Zicichen), 6 hours; mineralogy, 5 hours; con-
structional exercises in geometrical drawing, 4 tours ; technical and free drawing, 4 hours.

B. - Civil Enginecring Division.

First Annual Session.-Technical physics, 3 hours; knowledge (course 1), 5 hours, constructional drawing, 10 hours; geology
(course 1 in winter), 2 hours ; geology (course 2 in summer), 8 hours ; geological practice (in summer), 2 hourse ; ornmental draw
ing, 6 hours. Second 4 nnual Session, - Analytical mehat hours, building mechanise, 2 hours ; spherical natronomy (in win
ter), 4b hours ; higher geodesy (in summer), 4 hours; hydraulic
and bridge engineering, 5 hours ; constructional exercises and and bridge engineering, 5 hours; constructional exercises and
plans, 10 hours; tracing (Tcrrain Lelire), in summer, 2 hours.
Tirder Annual Session. constructional exercises and plans, 15 hoors, artititic perspective
(in winter), 2 hours ; perspective and landscape draving, 42 hours. First Annual Session.-Building Division.
Filding (course 1), 5 hours; building
 mechanical technology (in winter), 5 hours ; ornamental drawing
and modelling, 6 hours. Sceond 4 nnual Scession.-Art of building 3 hours ; practice in architectural drawing and planning; engy-
clopedia of road and hydraulic engineering (in summer), 4 hours building mechanics, 2 hours ; technical physics (in winter), hours; perspective and landscape drawing, 6 hours; orramental
drawing and modelling, 4 hours. Third Annual Seession. -The
particalars concening the particulars concerning this session will only be published fo
$1867-68$.
D.-Mechanical Enginecring Division.
 hours; mechanical, course technolosy, 5 hours ; constractional technical physics, 3 hours
 machinery (course 2), 10 hours; constructional exercises and plans,
15 hours; chemical technology (sugar manufacturing and brewing)
hours. E.-Chemical Technical Division.
First Session.-Organic chemistry, 3 hours; analytical chemistry,
2 hours ; laboratory practice, 10 hours ; general physics, 4 hours technical mechanics, 5 hours; mineralogy (in winter), 5 hours ing, dyeing, tanning, soap manufacturing, distilling, wines, fc.) knowledge of machinery, 3 hours ; knowledge of goods, 2 hour Third Session.- Laboratory practice, 20 hours; knowledge of build
ing (in winter), 4 hours ; mechanical technology (metallurgy, ing (in winter), 4 hours; mechhnical technology (metallurgy
working of metals, working of wood, spinning, paper manutac turing, \&c.), 5 hours; geology (course 1 in winter), 2 hours
geology (course 2 in summer), 5 hours.

Lectures not appertaining to any Division in particula

Modern history, history of Austria, zoological paleontology
history of German literature, the German classics, essays and de clamation, esthetics, agriculture (courses 1 and 2), national eco nomy (courses 1 and 2 , laws of trade and barter, statistics, poli
tical laws of Austria, book-keeping, business style, modelling. Extraordinary Lectures.
Integration of lineal differential equations, geometry of position nraphical statics, mathematical crystallography, crystallographic
gratice physics, anatomy of plants, botanical physiology, chemistry of the
alcohols, psychology and logic, ornamental drawing accidental surgery.
French, English, Italian, Persian, Turkish, Vulgo-Arabic-Sten
The Sultan's Fmbs Ramway Journey in Turkev.- There is no doubt that the Sultan's first railway journey in his own
dominions was a great success. The line from Rustchuk to Varna is about 120 miles in length, and runs through some of the fines
hill and wood scenery of Bulgaria. His Highness after two days at Rustchuk, left that city on the morning of the 6th nut. in a train consisting of nine carriages, painted white and emblazoned
with the star and crescent in white and gold. The engine was elaborately ornamented, and was in the charge of an English
driver, named Frank white. The journey occupied seven hours sithe Sulta road, and Pravaid. The embarkation at Varna was made before
sunset, astay of only three hoors being made at that port. The
Imperial suite of 700 persons, with their baggage, horses, \&ce. were conveyed to Varna in nine special trains, and no hitch of any
kind occurred during the journey. The Sultan has significd hil
竍 Barkley, who was in inmmediate charge of the Imperial train, and rail way enterprise in Enstern Europe.- Tima years in forwarding
The Losdon Trapyic Act.-As this new law, which comes into
operation on the 1st November next, makes special regulations as to the passage of materials and implements of engineers and It will be observed that that we extract limits are part of alluded to, enactmcnt and many
explain that the general limits mean that part of the metronoly enclosed in a circle of which the centre is Charing Corses, and the the
radii are four miles in a straight line from Charing Cross. The special limits are such streets or portions of streets advertised in the London Gasette, with the consent of the Secretary of State,
ns may be declared to be special under the provisions of the Act. With these provisoes the new. Traffic Act ilimits that no person ten in the morning and seven in the evening, except with the per-
mission of the commissioner of police, -1 . Drive or conduct along any street any cart, carringe or other vehicle laden with timber protrudes more than fft. 6in. behind the vehicle or more than Ift from the sides of the vehicle; 2 , Carry in any way along any
street any ladder, scaffold pole, or other article which exceeds 35 ft . in length or fft . 6 in in breadth; 3 , Drive or conduct along any
street any cart, wagon, or other vehicle used for conveying goods or merchandise, and drawn by more than four horses. Any person
acting in contravention of this section shall for each offence be liable to a penalty not exceeding forty shillings. No penalty shall be imposed on or costs awarded against any person por actiting in
contravention of this section if such rerson prove to the satisfac. tion of the magistrate having power to impose the penalty that
the Act alleged to be in contravention of this section was done on the occasion of a fire or other sudden emergency with a view to
prevent accident, or to save life or property Any byelaw, rule,
order, or regulation made or to be made within the city of Londo and the liberties thereof that is inconsistent with this seotion shall
be void.

UNIVERSAL EXHIBITION OF 1867
Group V, Class 44.-Chraical and Pharmaceutical Products
Les Mondes and other
(Continued from page 145).
MM. John Casthelas et Oic, of Paris.-Their space is remarkably rich in products obtained by greatly improved processes which do
great honour to French chemistry. They daily decompose two tons of nitrate of soda by sulphuric acid to make nitric acid, either monohydrated, of 48 deg. to 50 deg., or pentahydrated, of
35 deg. to 40 deg. Almost the whole of these acids is employed at the place of production. The monohydrated acid serves for the formation of the nitro-products of benzine and toluene, the acid into trinitrophenic or picric acid, bichloride of naphthalineinto phthalic aciō, \&ch. They transform daily a ton of benzine into nitrobenzine and aniline, and manufacture picric acid on a very some of the specimens exhibited being as much as one and two kilogrammes. They have designed an apparatus for buyers,
called a picrometer, which gives them the means of easily verifying for themselves the purity of the acid sold to them. Starting from the fact shown by MM. Paul and Errest
Depouilly, that the basic phthalate of lime when sulphurated at 300 deg. changes into benzoate of lime, they employ naphthaline for the production of benzoic acid. Phthalic acid results from the
oxidation of the naphthalic bichloride; phthalate of ammonia oxidation of the naphthatic bichloride; phthalate of ammonia
when distilled gives the phthalimide of Laurent; the phthalimide
distilled with powdered quicklime e gives benzonitrile; the benzoisstilled with powdered quicklime gives benzonitrile; the benzo-
nitrile boiled with caustic soda produces benzoate of whence hydrochloric acid precipitates benzoic acid. When the binitrochloro-formene or binitro-chloroform of Berthelot which possesses such a penetrating smell and such an energetic picrates of baryta, of iron, lead, and mercury; clloroxynnaphthalates of baryta, iron, zinc, nickel, and copper with aniline violets,
soluble garnet, isopurpurate of potassium, a fulminating substance, which has to be kept in water, and a product of the reaction
of cyanide of potassium on picric acid, which dyes wool of as rich and fine tints as those of orchil and with an economy of 25 per
MM. Coblenz Frerrs, of Paris.-Their pure and crystallised aboratory products leave nothing to be desired: as their pheny diamine, and paraniline. They are remarkably skilful in trans
forming the direct coal tar products into colouring matters, their enormous block of nitrotoluene, so admirably crystallised and of pale yellow colour, is almost perfectly freefrom nitrobenzine. They of nitrobenzineinto aniline and of nitrotolueneinto toluidine. They a sheet of copper, they plunge all into a solution of sulphate of copper. The galvanised iron turnings put in contact with surrounded with a sufficient quantity of water, and nitrobenzine or nitrotoluene is added, a galvanic current is established within the hydrogen water is decomposed, its oxygen goes to the iron, the toluidine, which is afterwards rendered pure ey rectifcation. By
treating the residues with sulphuric acid the copper is recovered treating the residues with sulphuric acid the copper is recovered
in the state of sulphate and is ready to be employed in a fresh
M. Huillard, sen., Pariu, exhibits the crystallised salts which form his special manufacture, one class derved from orchil,
orceine, orcine, erythrine, erythric acid, \&c., the others are
mineral, the protoxide mineral, the trotoxide, sesquioxide, and five carbonates
cobalt with the arseniate, phosphate, silicate, borate, sulphate nitrate, and chloride of cobalt. His aim is, first, to make, com mercially, various preparations of orchil, as liquid orchii orceellane extract of orchil or imperial red, which contains in the smallest
bulk the greatest possible quantity of chemically pure colouring
matter. Second, to produce cobalt blues on a great kcale which shall rival the German blues in beauty and cheapness. The price used for printing stuffs and papers, and they are so good that the have been used for 20 centime postage stamps, although they have th inconvenience of appearing green by artificial light, specialities, aniline green and the red obtained from carthamic
acid. He has ceded the monopoly of the first to Mubr, of Basle, and keep the other a secret. These M. J. J. unrivalled-the first in brightness and the second in freshness and can be given any degree of depth or paleness, as is shown
by the splendid exhibition of specimens of silk dyed with them. It is known that the green is produced by the action
of hyposulphite of soda on the blue arising from the treatment of rosaniline salts with ethylic aldehyde, but no one can guess
at the mode of producing artificial carthamic acid. M. Jean Rod, of Buste. - We have already noticed his 500 gramme specimen of crystallised and almost colourless ros
aniline. He competes successfully with the most renowned aniline. He competes successfuly with the most renowned
manufacturers of Paris and London, and produces daily
175 kilogrammes of hydrochloride of rosniline with propor175 kilogrammes of hydrochloride of rosaniline with propor
tionate quantities of aniline violets, blues, and greens. He produces at will from the same substances, and of equal purity,
hydrochloride of rosaniline, dyeing red, monophenylated ditto, dyeing violet red, diphenylated ditto, dyeing violet blue, and
triphenylated dyeing blue. This shows what a master he is of his art.
In another series of violets, blues, and greens, exhibited under
the name of Parma or Alexandra, ethyl replaces the phenyl, the name of Parma or Alexandra, etthyl replaces the phenyl,
as in M. Hoffmann's processes. Like M. Menier, M. Rod exhibits a trophy of 500 grammes of cyanine or quinoleine blue, incom-
parably the most beautiful of blues, but also, unfortunately, the most ephemeral. M. Rod is also eminent in the manufacture of pure crystallised dyes extracted from dye woods; his hoematine,
hoematoxyline, pure and commercial bresilines and berberines are hermatoxyline, pure and commercial bresslines and berberine.
triumphs of crystallisation in their way, and yet are cheap.
M. Paisant, of Pont Labbe.- His establishment was founded in 1840, for the manufacture of starch and its conversion into aflohol syrups and dextrine, but its very existence was soon
after threatened by the terrible invasion of the potato disease, and only retained subsequently its original purpose, so far as the
starch and glucose manufacture went. The rest was transformed starch and glucose manufacture went. The rest was trankiormed kelp. The consumption of this raw material is at present litres of lixiviated ashes. M. Paisant has greatly ameliorated theap character, and by the creation of a common provident fund against slack time and sickness, in which the women
participate already, and in which it is expected the children will particip.
soon join
$\boldsymbol{M} . \boldsymbol{E}$.E. Deiss, of Paris and Marseilles, must surely be placed in
the very foremost rank of practical chemists for his creation of
the famous manufacture of sulphide of carbon and its applithe famous manufacture of sulphide of carbon and its appli-
cation to the extraction of all kinds of fatty substances. In cation to the extraction of all kinds of fatty substances. In
1847 sulphide of carbon was worth 60f. the kilogramme, and was a mere laboratory product. In 1867 M . Deiss produces it
at 355 . the 100 kilogrammes. In 1848 a little sulphide of carbon at $35 f$. the 100 kilogrammes. In 1848 a little sulphide of carbon
was used in the manufacture of india-rubber. At present milwas used in the manufacture of india-rubber. At present mill
lions of kilogrammes of olenginous matter which were previously lions of kilogrammes of olenginous matter which were previously
lost are recovered from the rexidues of various trades by means of it, and this application of it is undoubtedly one of the most presses may be they always leave a sensible quantity of oil in
the residues of oil seeds. Sulphide of carbon removes the last trace of this.
Paris, Brussells, Lyons, and Marseilles have vast establishments specially devoted to the recovery of waste fatty matters.
Even in 1862 the trade of M. Weiss had attracted much attention; it has since then attained to perfectly colossal proportions.
xtrmetor Crreux, in Marseilles, Bouvelard Achard, a gigantic extrector treats forty-three cubic metres of pulp and waste of
olives every thirty-six hours, employing 45,000 kilogrammes of sulphide of tharty-six hours, thploying 45,000 kilogrammes of tilling apparatus, undergoes a complete reposeneration in the dis. without loss, and returns through the worms to take up more oil, \&c. \&c. This once dangerous agent now works without any nconvenience, and almost without smell. The quantity of oil from 3000 to 3500 kilogrammes
At Lyons there were annually thrown into the Rhone, which carried it to the sea, $5,000,000$ kilogrammes of soap, which had
served for washing silk. Hundreds of attempts had been made served ior washing silk. Hundreds of attempts had been made
to utilise this soapy water. The only theoretically successful process was the treatment by acids, which made a useful product
of the matters coming from the silk the now sulphide of carbon, as if by magic, separates instantaneously, and without putrefaction, the 'grit' from the fatty matters in Which it is entangled, which it gives up again on distillation wnw establishment at Mulatiere. The Lyons dyers already
ne accept the regenerated soaps, and very soon not an atom will be
ost of the enormous mass of soap which would other aisebe into the Mediterranean. The process for the extraction be thefown acid contained in the soap waters of the silk washings is as fol lows: -1000 kilogrammes of the soap waters are turned into a sheet ron apparatus hermetically crosed, but carrying a swan neck
communicating with a refrigerator. An equal weight of sulphide of carbon is introduced, and it is heated by a steam worm to to cool. Two strata are formed, the upper the with a little greasy sulphide, and the lower one limpid, and holding the fatty acids in solution; the limpid part is drawn off int
distilling apparatus and distilled, as in the extraction of other iatty matter.
Experience shows that the residues of oil seeds form better manure when the whole of the oil which they still contain has
been removed. The explanation of this fact is easy. The oil i aneutral body formed of hydrogen and carbon, and its presence is an obstacle to the assimilation by the soil and plants of the
nitrogenous materials contained in the pressed seeds; it was thus in any case a great improvement to treat these residues M. Deiss has built up a new and great trade. He also expects to treat the cakes coming from the stearine presses, on the M. Collas, of P Paris, noted for hais manufacture, by machinery,
har
a great scale of drugked pastilles. He was the first in 1848 is on a great scale of drugged pastilles. He was the first in 1848 to fabrics. He then discovered nitrobenzine, and for six years he was the only maker of it on a commercial scale; he offered it to bitter almonds, and in creating nitrobenzine he certainly became ne of the ear March :-" M. Collas has made benzine and nitrobenzine and introduced them into the trade. He employed the first to any colouring matter-but once put in possession of a product
which was previously unobtainable, M. Homan repeated the experiments of M. Runge on kyanol (aniline), Perkin reproduce reaction which had been before pointed out by Berzelius, and a great trade sprang up. The Muhouse Society thus recognises have greatly contributed, though indirectly, to the origin of the M. Collas be
owerfully proveves, after much stady, that phosphate of lime powerfully provokes or aids the decomposition of animal matter Didestion veing a sort of decomponition, 1 . Collas proposes to
aid it by various preparations of phosphate of lime. M. Collas also prepares, for medical purposes, chemically pure iron, enclose It is precipitated by a Bunsen's pile from a chloride solution, and is said to be a very efficacious form for administering iron.
M. Roussanu, of Pari, M. Rousecau, of Pari, exhibits, frrtly, specimens of pure pro-
ducts and reagents; seoondy, series of oxides and salts intended or the colouration of silicates, rendered very cheap without
deterioration of quality; thirdly, masses of sodium, which he was deterioration of quality; thirdty, masses of sodium, which he waa
the first to make on an industrial scale, and at such a price as to make it applicable for the production of aluminium (in this M prepared in a similar way, and also the the metals mately dis yrogalic acid, which he has manufactured since M. Regnanit howed of what service it would be in photography, and of which he sells 1500 to 1800 kilogrammes a year; sixthly, and lastly, the benzoic acid employed in the preparation of aniline dyes, which
he extracted without anyone suspecting, it in enormous quantities -many thousand kilogrammes annually-from the urine of cow collected with infinite trouble from the dairies round Paris.
Before this all the benzoic acid used in France came from German
M. Roussean's great aim has been to assist scientific researc y continuing to lower the prices of apparatus and reagents. He xhibits in Class 51 a stove, which is an improvement on that of
Gay-Lussac, and costs $25 f$. instead of 75 f.; a mineralogical case com plete.for 45t; a new densimeter very easy to use; and plates and cylinders of charcoal and porous vessels impregnated with char
 200f., intended for elementary instruction in chemistry, acconpanied by a small explanatory volume. M. Rousseau intend extend this idea to other branches of physical science
M. Rousseau wasthe first to propose and patent the emple
of pyrites for the manufacture of sulphuric acid, and the agglo merated coal or "patent fuel" of Paris. In 1849 he organised
the method of extracting sugar by the double agency of lime and
carbonic acid, which has been almost universally followed in Europe for the last twenty-four years, under the name of the
Rousseau, or saturation, process. He has lately made some further and reater impoements in this process by the discovery a new sucrate of lime, solid and insoluble in the cold. Reduce to this form the sugar contained in the juices or syrups of the refining works. He has also discovered a decolourising black, reftining works. He has also the low rate of 8 f . the 100 kilogrammes
obter
M. Robinct, of Paris, exhibits 100 specimens of water, his object being to solicit other specimens from all parts of the graphical Dictionary." M. Robinet undertakes to supply bottle and to pay the carriage from the remotest ends of the earth. nocel article in "marine silk" made from the eggs of the saddle ray (la raie batis), a fish of the scebacis family. The outer envelope of the egg is formed of a very giving a good and beautiful fibre when combed out. The egg
also contains a considerable quantity of albumen. M. Joly also shows a cream of cod liver oil more agreeable than the purest shows a cream of cod liver oil more agreeable than ene purest
oil also oil from the livers of other fishes for leather dressing and a valunble manure, termed French guano, made from refuse and inedible fish.

Ch. Genevoix, 58, Rue Bonaparte, exhibits some nic drugs. As these are prepared on a very large scale they aro good and cheap.
M. Emile Gicn

Nix. 14, Rue des Beau Arts, has introduce The chestnuts are fermented, boiled in ten times their weight of water, and converted into glucose by treatment withtwo per cent. of sulpharic acid. The oir hoals to the top, and is ready for use. It is very limpid and readily absorbed by
the skin, and thus becomes valuable in gouty and rheumatic affections.
M. Genevoix also introduces some new compounds of valeric drug he valeriate of ammonia was already known as a valuable drug. He also proposes as a substitute for pouitices, which
are always unpleasant, an impermeable tissue covering one two folds of an absorbent, one which is to be moistened with the drug it is desired to exhibit.
M. Bobcuf, of Rue Buffault, Paris, is well known as the phenic or soacic phenol. He exhibits some grand specimens acid has fallen from 100 f to 5 f to 14f. His sodic phenol is likely to become a very highly prized perfume.
M.
auth Dumoulin, among many other useful things, is the acid on the quasi resin of the phemio ars alm and carbon of the resin combines with the acid to form cartoon the or picric acid, and the resin is transformed into wax similar t beeswax. The acid obtained is very pure, and not greasy like
that obtained from tar ; it is highly fulminating, and explodes on the least shock.

s
the patent journal.
Condensed from the Jourral of the Commisesioners of Patents.
Grants and Dates of Provisional Protection for Six Months

 purposes."
2281 . THows
stokes
classex

provemens in apparitus for obtainiog motive cower and for rasting and
forcing water and fausa."

 parts of such looms.
2304. GEORGE WAB M

2312. JoHANX HRn
generating steam.
 den, Cambridgeshire, "I mprovements in machinory or apparatus for washing coprolltes."-12h August, 1867 .
Inventions Proteoted for Six Months by the Deposit o

 Patents on which the Stamp Duty of 259 has been Paid
 2235. ALEEXANDER CAR
2269. CHABLES ATwwoon Tow Law If 2277. Ricicilid ciminiss, Rotherham, Yorishire, "Hydrants."-17U Septem
 1864.
24.6. GEosee haskutise, Southampton-builalings, Chancery-lane, London

Patents on which the stamp Duty of elou has been Paid
2039. STrpigx Grexwoo. .umtertela-place, Cropper-lane, Bradford, York-
 ${ }^{2271} 18$. GRIFrith OwEN, Boston Lodge, Merionethshire, "Sawing machines,"

 Ipwwich, "Apparatus used in producing moulios for casting. "-2sth Augusi,
1830

Notices of Intention to Proceed with Patente

 1127. THo Mas Wood GRAY, Margaret-street, Limehoose, "I Improvements in
Bir Willam Snow Harris' ilghtung conauactors for ships, vesels, bullalings,

 provements sintrin means, (Cambridge vilus, Hackney, Mradiesex, "Im
meerachaum and massa.,

 1142. WiLLAM BEGG, Preston, Lancashire, "Improvements in apparatas fo
 catching Assh."-18th April,', 1867 1447. WLDLIAIM KIRALAE, Bridger-road, Vlictoria Park, London," An Improve
ment in the manutacure of bricks and other materilis without the ose o

 ments in distributing and meesuring gas, tean, water, acd other fluids, an

Li79. WHLLAM ROBERT LAKE, Soathampton-bailidings, Chancory-lane
London, An improved mode of and apparatus for sprinking or difisasing

 1204. HUGH S Suith, Much Hadham, Herts, "Improvements in preparing turalp
 R23. MA or indicating and registering
 ments th the manuactare of sugar." A communtication romon Louis joseve

 1284. THOILS N Wood, Manchester, "Improvements in safoty valves and
arrangements tor prevening damase to or the explosion of steam boilers." arrangements for preventing damage to or the explosion of steam boilers."-
A communtication from Murdock Macpherson, Bulto
Ironworks,

 "An Improved apparatus for cleaning bolier and other tubes."-A communl-

 Oinel
apliation
July, 1867 .

 ments in obtatning sulpharico acla from tho refuso 'plctile' or liguor used in

List of Specifleations Published during the week onding

$* *$ Specifcations will be forwarded by post from the Patentonticeon recolpt of the emount of price and postage. Sums exceecding 5s. must be remitted by

ABSTRACTS OF SPECIFICATIONS

The following descriptions are made from Abstracts prepared expresty yor TIIE
EXNINEER, at the office of her Maviety's Commitsioners of Patents.
Class 1.-PRIME MOVERS
Including Fixed Steam and other Engines, Horse, Wind, and
Water Mills, Gearing, Boilers, Fittings, dce 162. W. Exalu, Reading, "A

This invention rialates to the applicatlon of dampers to the aliferent rows of
tubes so combinel and arrangece as to tubees, so combinod and arranged as to produce a diffrontital action, whereby
the whole of the tubes shall be closed, more or less, at same time, und at all

 166. W. E. Newrov, Chancryy-lane, London, "1
communication,- - Dated 22 nd J January, 1867 ,

This invention conslsts, in tho First place, in placing the injector within the
 of the instrument, it may be renderea leses expensilvo to manu factura. The
 nterior through transverse hales made near the inner or bait end of the instru
 place on its seat by a screw clamp which is inserted from the outside, and also
 the nozzle is made in the form of two frustrums of cones, with their small ends
opposito to each other. The passage through the water injector is alto formed
 opentoss in the water pasaage any exceess of water under pressure will escape

Class 2.-TRANSPORT

Including Railways and Plant, Road-Making, Steam Vessels, Ma
chinery and Fittings, Sailing Vessels, Boals, Carriages, Carts, Harness, dc.
ist. J. EpwarDs, Ealing, ". Horse-shoe cuhhion."-Dated 211 t January, 1867 .
In periorming tins inventon the patenteo proposes to form the cushion indla-rubber, gutta-percena, rett, cork, or any combination thereor, or of of any
other sultabio sooft strengthened by a woven or other textlle fabric on one or both surfaces. The
apper surface of the cushion ts made to correspund with the oulline of the shoe
and
 berevicd
with a fange on the interior outline, and outsice this flange the Inner silice of the shoe tits, and thus keeps the cushion in a irm and immovable position Intervening; the nails passing through the cushion serve further, to secure the
 the pres
weather.
157. T. M. GuAdssione, Strand, London, "Ships' anchors."-Dated 22nd Janu-
 from the shank, aithough two of the sald arms may be weldod together at the
two stop points of the cross plates instead of beling screw-bolted or rivetted

 shank korm the crown of the anchor, At the eorrsponandige end of the anchor apha or bolt spaseel throush it forms the plyot on which hies stank rotated so ato bring the angle ot the arms and the shan:
165. H. BRidgewater, Watford, Hertford, "Turntable."-Dated 22nd January, This invention consists in providing for an equal sustaining power on the
main and transverse tracks, and in making the rails which form the tracks for carriages to pass over material parts of the framing of the tarntable.
179. L. Thosstos, Shalford, near Guilford, and E. THosntos, Croydon, Railtsay sleppers and chairs"- Dated 24 ih January, 18 other similar hard metal, or other hard material, and such sleepers (whict the ends in order to allowe the chairs to be properly fitted on to the sleeper chair is constructed so as to fit into the sald notehes or cuter, for whlch. parpose
it has at tis under part grooves or erss. or grooved picees, the ravoves clipping
the sleeper and holding the chalr and sleeper firmly fixed together. 195. W. BURLEY, Birmingham, "Securing lamps for railtway and other carThis invention relates to carriage lamps, and consists of a new form of lamp
on and fastener for securing the lamp to the carriage. The lamp iron which is is xed to the carriage is made solila throughoot, the free end ternininating in
screw. At the side of the lamp is formed to recelve the end of the lamp Ire the socket, so that it can rotate freely without mooring lognitudinally, A few
urns of this nut will secure the lamp in the required position or release it herefrom
ardens, Pimlico, "Anchors."-Dated 25th JanuThis invention consists in causing anchors to readily take a hold of the ground
when falling at random. The inventor constructs them with the arms and
dikes (while being disposed with reference to the shank as heretofore in sine at belng bent or curved upwards or forverdo towards the end of the shank to
which the cable is to be attached) not disposed as heretofore in respect of being n end view, or as seen looking in the line or direction of the shank, with the
 the shank. The invention also includes the inclination of the palims so that the
ffect mayy be, wheu the shank is pulled, to ralse one or other of the palms (with its arm) whlchever may be presented downwards to enter the ground,
and form for Itself and work itsoef into the ground in an inclincd or screw-llke
path. The inventor dispenses with the stock or cross-bar. -Not proceded wilh.

Class 3.-FABRICS.
Including Machinery and Mechanical Operations connected with Preparing, Manujacturing, Pac. W. and J. W. Wood, Monkhil, near Pontefract. Forkshire, "Manufacture of
fitrons yarns or threads and in apparatus for the same."-Dated $18 t$ January, 1867.
This inention consists in making cored fibrous yarns or threads from mix-
tures of different lengths, kinds, or colours, of fibres or threads, in such tures of different lengths, kinds, or colours, of fibres or threads, in such
manner that any desired kind or coloor of tibres or thread is placed on the
outside of the yarn, and the other forms the inside or core.- Not procecded
${ }^{\text {with }}$. C. PReston, G. DANL, W. HOVGHToN, and R. Borromeley, Rochdale,
Improements in or applicable to mule and hike machines for roving,
stubbing, spinning, twesting, and doubling cotton, de."-Dated sth Janiuary. The First part of this invention relates to an arrangement of mechanism for
giving the movements to the "cam shant " of mules and like machines, giving thists in the use of a ratchet wheel which is made constantly to rotate
and consis
on the axis of the cam shaf, and in arranging a "pawl "or "click "to oe carr-
rled by or jointed upon a part from or in connecton with the cam shan, the
pawl being pressed towards the teeth of the ratchet by a spo pawl eing stessed towards the teeth of the ratchet by a spring, so chat, when
one of the stops is withdrawn a pin or projection from the pawior click will be
rele thus carry the pawl and cam shaf round with it, until one of the stops comes
in contact with the projection from the paww, which will then be ilfed from the teeth or the ratche, and the movement of the cam shafl whike arrested act for
same time. Thls releasing and lifllyg of the pawi or click takes place once for
each movement of the cam shaft The Second part of the invention relates to an arrangement and combination of mechanism for stopping and starting the
rollers, oropenting and closing the jaws or sildes by or through whicc the ma-
terial te spun is dellivered. The Third part of the Invention relates to an Incresed speed to the 53. W. Wood, Mo

In the manufacture of terry and cut pile carpets the piled surface is ordldyed the required colours, The object of this part of the present invention is
to lessen the cost of the pile surface so as to make pile carpets more generally used, and this the inventor does by making the plie yarns from stuff, worsted,
and woollen cuttings, and rags, or other fibrous semi-waste matters. These cattings, rags, or waste being mostly dyed, he sorts out therefrom the different or waste contain any cotton or Ininen to decompose the vegetable matters sy acclds, yarn, redyeing or tinting when required, and generally mixing the coloured (her new
the raised or plle suriace of Brussels, tapestry, and prom these yarns he forms
thind cut pile carpets in the usual mode, the pile surface belng either whilly
formed therefrom or in combination with ordinary yarns.-Not proceded
62. J. M. Herterarvaron, Manchester, "Machinery for preparing cotton and
other fibrous material for spinning."-Dated 9 th January, 1867. other fibrous material for spinning. - Dated 9 th
The First of these improvements is in the carding engine, and refersito that the purpose of enabiling them to be stripped. Hitherto these hinges or centres
of motion have been movable for the purpose of aajjusting the position of the of motion permanently to the framework, and he renders the liats adjustable Another improvement in the carding engine relates to strippling the back flats. ber of triggers for causing the flats to be torned at the back part of the machine anatin distance and then returns. Another part of the invention melates to slubbing, oving, or other sech machines, and consists, firsty, in a method of
sind another in which is a projectung part extending to the rail to be balanced. The adjustable centre above mentioned enables the apparatus to be adapted between two spindles. Also in such machines he adapts a cover
which covering also extends to the bottom shafss also h
at bottom to prevent the flyings from reaching the floor.
12. J. C. Elusov, Shelfdye Works, near Halfax, "Appcratus for folding
fabrics, and also for holding and inserting cardboards, metalic plates, or
other substances between the folds of fabrics to be presed."-Dated 2 nd

other subatan? January, 1867.

filded into two compartments, each or sultable size and form to horld a necessary quanilty of the cardboards, metallic plates, or other substances so
inserted betwixt the folds of a a fabric required to be pressed. A silt or siot is
and
 or aperture is formed to each, which are adjustable to the exact thickness or
one of the cardoards, metallic plates, or other substance emploged for inser
Ulon. Or these openings may be formed at the fop of the box for the cards o

issoed from
folids, and so
ceded nouth.
ceded wath.
86. w. \mathbf{E}.
Gedge, wallintor

 angles; this table Is sarranged so as to reecive the pleces of cloth as they issoe

93. W. Et. NEwTox, Chancery. lane, Lond

This invention consists, First, In the use of revolving, and vibrating a

 thrown forvard attornately, first one and then the other, and at times case to

 interfernngw or projections on the wires that are interposed betwen the Jacquard
uen of
and the and the needle, and which drive the neediles and remote from the ends of such
wires, so that needies in the line of such nibbed wircs mayy be moved orwari
fir

 regulator in combination with a knituing loom or machine, which regulatar caa bining in a knltung loom or machine two Nws of needies and two crosshead (each crosshead carrying a yarn or thread), and an intermediate nexdie on
needies in the central part of the rows of needles for the parpose of f nitting up the legs of a pair od drawers, then unting them to or running them into the
body portion of the drawers, and tindshing hie body, and then commending and

113. J. Cravery, Thornton, near Bradford, "Apparatua for fringing shaveht This invention consists in the applcation to ordilary sewing machines
certain mechanical parts for the purpose of rendering them capspole of prodacin Irnge on shawls, mantues, or other similar articles simultaneossly with the
process of hemming such fabrics y the same machine. An arm capable osciliatory motion carrying a needie is employed for introducing the yarn
thread to torm the fringe. which needie is is inserted through the edgeor the hem or the folaed edge or the fabric, when formed by an ordinary folding instral
ment, the sald needle thas passing the yarn between the fold of the fabric The folds of the rabric, and between angles thereto, and on the witudrawal of the sald fringe noedle the refinge sarr forms a loop around the stitch or thread introduced by the hemming needie.
The fringe needie eis then witharawn and carried by the occellitatory arm outt

 A carrier or stud wheel is introduceal between these gear wheels to nadmit of change wheels sedng deed, forereby any nember or stitches by the hemiming rringe yaras any distance apart
thin ringes as may be required.
116. W. Howarth and M. Pearson, Bradford, and J. Pearsow, Thornton,
 127. E.J. Surtr, Halifax. "Apparatus for he manufacture of ' Hinoos' used This inveniton relates, chiefy, to means or manufacturing artices technteally

 sald dies exactiy opposite ero a hoies a wire placed between them, a hold on will be punched or formed theretin. This punch is passed through the die from
behind, where it is supported by a set serew or cotar, and prevented from

 length of wire may be cut of exactly at the etatenened part, ord at and yiven dids
tance ethereform, the mean distance betwen the plicers and the eutung tongs

 and ether carriage turead
of the puris and of the lacing

 Lastly, the inventors employ
shate.. - Not p proceded trih.
53. W. MA.AxpRgw. King Wizliam-strect, London, "ISachincry for ginning

 motion of the beater bar is arranged to be capabie or adjustment in order
sult tse action to difierent engzths or stapie of cotton fibre. The beaters arn fixed on the beater bar paralle to each other, and at right angles to the doctor
they are also set at a short distance apari-generally between one and two nches apart. - Not proceeded with.
156. W. J. and H. Harrisov, and B. Croasdale, Bacdourn, "Looms."-
 to which then back k rit of the loose reed is connocted. IN performing this itiven-
 when the reed is near the fell of the cloth to hold the reed when the went

 Ts rete puining notch, therecby

Acoording to this invention the inventors stamp or punch the prongs and
trame of ach fork out of sheet metal, and form the bearing or barrel of

Class 4. AGRICULTURE.

Including 4 gricultural Engines, Windlasses, Implements, Flour,

Class 5.-BUILDING.

Including Brick and Tile Machines, Bricks, Tiles, Drain Pipes,
and Housc Fittings, Warming, Ventilating, dec. 9. H. BUss. M.D.D. Hijhs-stret, Shoredidch, Londan, "I Improvements in con-

 covered externally on every side but the top with sheets of iron so iveteot to
the said framework as to form a wateright vesel. The prectse ehape of such

 Welthdrawn, and provision beelog made in the internal framing each pyramildal

81. J. HoxoLx, Doner. "A pparatus for preceating wind, drauyhts, and water

 down poon the foioor or carapet tand prevents wind, dast, or water from coming
underneath. In the same manner when the door is opened and the end of the

 The body or this mach nin itad rectan Jumarar receptacle placed upon a bed plate,
avertial shan mounted in sultabie bearings belng placed in the centre thereof

friction which takea place against the internal surfaces of the tubes, the length
and capacity of witch proportions the dearee of compresilon. At any desired and capacity or witch proportions the dearee of conpresion. At any deaired
distance from the reapective ends of the tubes are arranged knives or other
analogous cutung or diviaing contrivances working through the tabes, the same beling caused alternately to rise and fall at any desired intervais by
means of jointed levers, the motion oo which to regulated by the operation or
pins atectill
 provided ing tox and respectively advaning and reifing the orewith, atotot meing machine for the working of the studs to which the
rods are attached. Attached to a bracket carried by the moving box, or
 connected with the moving box for the purpose of operating metallic plates, so
 ments and mounted upon axes, and cased respectively to revolve through the
renuired distances by rods connected with the moving boo. Upon the box
t maing from the tubes and beligg recelived by the moulds, the iatier are caused isuuing from the tubes and beling reeelived by the moulds, the latier are caused
partially to revolve by the operation of the connecting rods, whereby the biceka
 to une in conjunction with this inventiont or instead of using revorving mouida
the blocks may be subjected to addifional preasure or impreasment upon
 of the box.

CIass 6.-FLRE-ARMS.

Class 6.-FLRE-ARMS.
Including Gune, Suords, Cannon, Shots, Shells, Gunpowder, Im
plements of War or for Defence, Gun Cairiages, de.
尘

 Io

 and

 and

 and

 tarown out of the gan. The bar of the oxntractor may be allowed to run tin a

Class 7.-FURNITURE AND CLOTHING

Including Cooking Utenails, Upinolstery, Ornaments, Musical Instru

13. A. Whand, and C. G. Venoo, Bradford, Yorkalire, "Soarfi,"-Dated ind

The patanitese claim the construction of scarfs in such a manner that two or
more different sorfaces or patterns may be presented when in use in ute or the same searf by the first method, and two by the second or alternate methodd,
thereby makiong one scarf answer the name parpose as several soarfa, whether

 31. J. H. 8chechy, Storesestret, Aedford spuars, London, "Action of upright

In arrauging the action of aprisht planofortes, acoonling to this iavention,
 of downwards, as is upaal in apright actions. He arranges the striker to step on to the inner eud of the foger key, a peg being driven into the end of ten
hey which catera a hole or reocess in the foot of the sticker, anad to preven!
nolise a plece of felt is interposed between the key lever and the ntieker.

 works with an escapperment butten oa the main rail. The stem of the hammeer
paisea pases down through a alot in the horizontal hmb of the ever, and at the front
end of the nlot is a soft adjustable stop for the hammer to rest asainsi, and the
upper end of hammer butt, afier the blow has been struck, remaining in contact with it
untll the fiser its angle.-Not proceded wilh.
 Ing a Forte ation in harmontioms arrangements of mechangs, which is mach for obtain-
and effective than any arrangement heretofore cmployed, and which is per-
fectly unter
 In this cover are formed one or more openiugs with bevelled or conical sildes,
in which nt valves with corresponatogity backed or conical siles, so
that by the simple welght of the valves they wedge themeelves to such an

 The aforesald valves are attacted to levers working on dixed fulera upon which
the vaives consequeatly hinge when they are opened and closed. They have
 they are comnected together by rods, no as an all to be beopened or closed at the
same time by one and the same action,- Noos proceded will. 66. A. Yoveavt. M.D., Paris, "Waterproof and other articla of wearing In performing thas invention the inventor fits or attaches to the garment an
ant chimber or vesel preferably of lenticular form in section, nud placed in the
arm piti ench arm pit j such chamber or vesect is made whoily or partiy of fexible material,
so that it may contraet when eaptied of alr and expand when filled with alr.
The chamber communicates at one end with a plpe or passage which opena into the garment, and at tho other end the chamber communicates with anotber
pipe or pasaze which comes entering through whe neck or other openings of the garment. The frokh air
provised with valves which open and coso communication with the are
anir
chamber, the evalves openlog in such manner that one will only allow
enter the chamber, chamhter, the valves opening in such manner that one will only allow air to
enter the chamber, and the ohther only yallows atr to eccapo thence, each remisting
respectively a reverse action. As the wearer moves his arme he compreses

Clase 8.-CHEMICAL.

Including Speoial Chemical and Pharmaceutical Preparations, Fuel

 Brewing, Tanning, Bleaching, Dyeing, Calico-Prunting, Smelting, 2. J. ROWLEEY, Grownenor terrace, Clambervell, "Procos for hardeniag, Beach. 164. J. PAtisos, Airdrie, Lanark, " Illuminating aan"-Dated 22nd January, This invention conslist, Fint, essentially, in the ase of hydrocarbon, rock, or
minerai olls, commeroinaly known as stalie or coal ofls and petroleum, for the

Class 9 --BLEGTRLCITY

Including Electric, Magnetic, and Electro-magnetic A pparatus,
Electrical A pparatus, Galvanic Batteries, 16, o. B. Burri, Birmingham, "Improvements in supports for the innulators of In makiog supports for the insuatiotors of electric telegraphs according to thbis
nvention the inventor employs tubing of wrought ron, the sald tabling being by preference rectangular and oblong in cross section. He cuts the saila tabing Into lengths equal to the tength of two of the supparis and the diameter of the
posit at he point where the euppors are to be fixed. He closes cech end of
pie of the fube. Or orld wrousht fron bars may be emplioned inateud of the salid
tubes; but he prefers tabes. Holes are made near tue ends of the tube and tubes; but he prefers tabes. HiLles are made near tue ends or
throogh the solis blocks for the reception in the ordinary manner
which the which the insulators are supported in fixing the eupports to the posts. All the
the tabe tion of pega in
sald holes are made across the tube in the direction of lis longer diameter. In
 post for the supports to pass thirough, the said hoocs being or tee ame silape as
the cross meetion of the suppors, the longer diameter of the holes being situated
verticely. of the support ts fixed to the post by two taper pegs or keys belog inserted or
driven in the hole formed near the middle of the support. These pegs or keys

[^0]This inve ntion cannot be deseribed without reference to the drawings.
Si. E. Bioowas, Plect-sirect, London, "Working
A comin
This invention comprises, Fintly, a special instrament for the provious come

Class 10.-MISCELLANEOUS.

Including all Specifications net found under the preceling heads.
 erpunged wieth moiture."-Dated 24th Deecember, 1866 . for paper and other
 credd wian.
3393. R. \mathbf{H}
 December, 1866\%

 regulete he deppth wow with a rotatory or other cutting tool acts upon the

 ar

 This sinvention relates.

 The patentee caitms the general arrangement or maehinery. for cutting,

3422. F. WATKNs, Bitminghan," "Machinery for shaping and forging metals

 above or at the suiftice of the water, the silios of canals, rivers, embankments,
nd conts. The
nad

he makes two avertures opposte each other. and the on the plug a barrel
having two oppootte chambers, each opening over the tridge with their edges
 and discharge are always open to the ends of the plag. and when the barreil is
in such a poition that the chambers are full open to the apertures there is a

 rall, open, and entrely closed are regmited by turning the barrel,
tie oblambers to be more or less open to the apertures in the plag,
3126. W. Wraxy. Dublin, " Strops or betis for drietng machinery."-Dated 291h Thiscivivention cannot bo deseribed without reference to the drawings. 3428. Fiv. Leoxardr, Birmingham, "Meallic Cores."-Dated 290h December
Thise invention consists in improvements in the manufacture of metel This Invention conssists in improvements in the manufacture of metallle
boxes from sheet metal. Boxes made according to this invention are nted to
 pitee theem morer or mers the forn
made according to this siventio

 3137. T. W. Corldenv, old K.
Date 3 Klt Deember, 1866 .

Thle invention consists th the enployment of leather, leather-cloth, \&ed, for
lotht in tue waistrands of trousers, nind in substituting studs in the plice of

 3441. H. ALLuxAN. Ampthill-spuare, London, "Looks and keys."-Dated 3iat

 he ses spring or platn washers betwen the sald levers or tumblers, so an to

 rotation to the stamp face than the remainaer of the sald levers, ,o that when
the stump ts presed compelling such long levers to be aujusted for the paxages of the stump first
before the otherss
Sixthly, he forms onc or more of these sald lan
 oceapy snch a position as to close or block the keyh

 343. J. H. Jons sox, Lineoln's-inn-flelde, Londin, "Apparatursfor adeertising."
 attached the placards or notices to which pubiliciy is to be given, alyht being

346. J. T. Gurprys, Fletatstret, London, "Calender movements for clocks."-A Tomimumization. -Dated 315: December. 1866 .

 Iron or other hard metal, and partuy of tock tin or other anti-friction metal.
Not proceded heilit. 3. A.D. CABPBELL, Manchecter, "Bench planing machine""-A communication.

 4. G. sivinr, Aberden, "Manufacture of coms, and in Die machinery or appaThis invention has for its essental object a cortain arrangement of comb-
cutting meehanimm whereby a greater number of combs can be cut in a given time tuan by other means for effecting this mechanical operation at prosent in
use. In cirring provided in whilit the entters are placed, the jaws forming a partor or parss of
levers, which aro moved ap and down by a crank to revolve in any convenlent
 made silghty Inclined and corved at the ends to enable the proper form of
tooth for the eombto be produced. Aner the cutters have completely frected
 7. H. W. Hast, Claphom," Apparatuu for containing aftertising and addres

 cardus panel through whith may be seen one of the cards, which may be placed
na

 draw out a card, but only one.- Not proceceded with.
Thaccines "-Dated 1st January, 1867 . ${ }^{2}$.

 20. W. G. Hesser, Lierpool, "Apparatus for manufacturing photopraphic

 manner that it can be opened and closed in the same directon. He thereby
renders 1 t certat that the extra quantily of light allowed to entor through ht

 proceede widh. W. Witersiampton, "Mould for making cigurette."-Dated 4in

 36. E. K. Dotrox, Nanchater, "Wate diticery ' norlar' employed in be cxThisitivention is Gesigned for the parpose of sireation or braiking ap the
 centro or the nozale. The upper ends of the levers have projections on thel
inner sides, which are preferably formed of a wedke shape, and act as sprealery when moved ints the jet of water sssuing from the nozzio, the sald moton
being effected by a groovzd cam aeting on the lower ends of the levers, or in
 38. T. W. Lavis. Leicaster "Knitting mactines." Dated Sth Jomuary, 1867 .

 admitting of the entire cande beling consumed

Thersiily known as as choke damp, affer damp the effects of carbonlc acid ga Wrought or cast iron, brick or stor the workings, witch chambers may be of

The patentec coilmo First, an auger having a twist, whose front or working
faces are conav and whose rear surficese are conves, as set forth; Secont.

given point on a line parallel, or nearly so, with the axis of the auger, and
sharpening its edges ; Third, a cutting lip formed by the concavity of the twis
then terminating on a line paraliel, or nearly so, with the axis of the auger, the
harpened edge of the lip following the concavity of the twist from the screw or cotting points to the periphery, and inclined to the axis of the auger, sub.
stantlally as described; Fourth, the combination of the twist, the cuuting lip, stantialy as described; Fourth, the combination of the twist, the cutt,
and the catting edge of the twist, substantially as shown and described.
 The patentee claims applying a cap or cover to the borehole and forcing
water or anr into it in such a manner as to expel the brine by a pipe passigg
from the botom of the borehole to the surface, or to the place to which the the
brine is required to be ratsed. He also claims the closing of the bore at any rrom ho bettom or the borehole to the surface, or to the place to which the
brine 1 s required to be ratsed. Hu also claims the closing of the bore at any
convenient distance from the surface with a cap or cover, and applying a ling pump above such cap or cover either to assist the force pump to raise the brine
to the surface or place where it is required, or as a substitute for the sald force pum


```
M.)
```


 C8. $\begin{aligned} & \text { Isisil } \\ & \text { Thls }\end{aligned}$

 difterential pump by byyising

 2. S. P. Wivxul, Granchater. Camborideasires "An improved form int Janary, 1867
 means or apparatus for supplying ink to pens."- Dated Ith Jamanary. 1866.
This invention has for its obecet the supplying of Ink to pens used for writing
without the necessity of dipping the pen into the writing flaid, as the body of witliout the necessity of dipping the pen into the writing fluid, as the body of
te pentolder is constructed so os to contain and sapply the ink to the writing
points or nibs. This patt of the invention is based upon another inventon for points or nibs. This part of the invention is based upon another invention for
which provisional protection was granted to the present inventor the 6 th
December, 1866 (No. 3215). The Scond part of this invention relatea to the meana or appat

 ondiuary mortars, betons. or concretes, so that the salid improved beton may be
agglonerated into moulds by ramming. The present improvements relate, agglomerated into moulas my ramming. Trituting the materials; Secondly, to
Yirst, to the apparatus for mixing and trand
an improvement in the mode of manufacturing the beton; and, Thirdy, to
 The
cheal.
Tis
1.

wood, and by means of glue or other adhesive material he glaes or affixes the
said veneers to one or both sides of the said miliboard. The surface of the

 92. C. J. Pownall, Union Club, "Faciliating the remoral of snow, hail, or ice

 otyect being that whilil the process of converasion is proceeding in one the other
are beling filled with snow. Each of these compartments is to

 with the injection pipes. Each chamber is to have a door or lla for filling tio
the snow, which shall be capable or being readily pecured, so as when shat to
 apparatus capable of generating a suflcient supply of steam or hot alr is to be
provided, having a force pump and all other necessary fittings. Thls poller

TiUh January, isb7. This invention consis

rights, over witch is ats in the employment of one or more stationary ap rounded by the sleve is isserted an upright movable bar, fitted with teeth on
one of tit

 It with the hand, and lowered again by yits own gravity by simply disengaging
temporarly the pawl from the teeth cut on the side of the bar. 98. S. DE WLDE, Hatham Park. road. Hacham, " Apparatus wed when prob-
ing for balls or projeties"-Dated 14th January. 1867 .
 conducutusg tube, whatch protect theer points, whilst they are introduced into
the wound, and can then be drawn back, as described. 99. W. CLARK, Chamcory-Iane, London, "Pipe moulding and casting apparatus,"

 and het, namely, that communteating with the moulding pit, the latter connect
oung
ing u,
 duty on a chaned
or a moulding plt proper, the effect being elther to throw the moilders out of
work

 of the black wash to the outside of the mould can thus be effected in a shol
time, with litlee trouble, and without danger of injuring the Intertor of to mouid. The invention conssist alto in the combination with a sprinkler of a
conlcal gulde piece or head, In such a manner that the sprinkier is retained

 convenienty be fetched out.
. "Apparatus for condensing smote and rapours."-

 to orre the uncondensed portion through the water in one or more other rececp
 This sinvention has for its object, First, to render those ariticles portable, so
 ciple or a Iolding fan, but instead or being made to open to only the segment
of a circle, as 1 s usally

 provided with a hanolic, which may be jointed so as to fold ilke an ordinary
 105. M. IE MEMY, Flet-streat, London, "I mprovements in the means shereby tools

The patentee claims the employment of a jointed or articulated frame, or or
a number of frames, tark, arms, or roos, or rods jointed or articalated together.
 which motionstrans.
applances or part conneceded whth such jointed frame frame, arms, bars, or
rods, so that such tool, instrument, may be moved to and worked at various parts of articles or surfaces to be
operated on by the same, substantially as decribed 108. J. J. E. R. HAsDIs, Pari, "Clocks""- Dated 15 th January, 1867.
 deteription:-First, the opening of tie rim is dispensed wo the ch very often

Arst todex being acted upon, or for Imparting a forward or
ment to the seting rod by a second Index teing operated

109. C. Colvilu, Paris, "Meters for gas and lipuids",

Thilit invention consixisis in causing the rotation of the axle of a metre for ges
 will be recorded by an ordilnary counter. The meter is constructed by mounting
 which remanan extended while Impelled by the foow untill it passese from the the
case, when they are folled or collapsed unitl, by the rotation of the axle, they case, whea they are folded or coilapsed untl, by the rotaion or tho
are azain in succession presented to the action of the entering fuld
 noter (irming tisis invention hee inventor folds each sheet of paper by

 117. P. JA. IVEs. Poole, Dorret, "Apparatus for rentilating minea."-Dated Izel
 reges yating valves, through whilish series of pipes the fool alr is drawn out of the
res
mine
 having openings proviloed with regulating valves, through which series of pipes
fresh air is forced Into the passages and workings by means of one or more Other pumps or fans. By thus simuitaneously supplying fresh air to all parts
 which may, with advantage, be caused to escape from a jet atuated in the up-
cass than of the mine, so as to tiocrease the upward draught theredin. - Nol
118. W. STAFFPRD and W,
Dated 17t Januar, 186.
This Inventon has or

This inventiton has for tors. object the construction of bolts in such munne
that the nut when screwed up cannot move on the thread or become constracting boits according to this invention the end of the shank is spllt,
aner which it is chased, or
 monement of the nuts. When tit is necessar, to remove a nut, a side how on
the wedge will ilsplace th, and the nut is then removed by a key in the oral122. R. Nawrail, Astrood Bamk, Worvestershire, "Receptactes for needles,
 case, and an elastio spring is connected to both cases in such manner as to
kep them open whilst reeuisise and to witharaw the inner case within the
outer when reaulred io be cosed.

the constructlon of a box for ho:ding matches in
 inner 1
 126. A. Bexerss, Literpool, "PMing splints into he dipping frames used in ine This machine consists of a suitable fruming supporting a ahaft which drives
two short transverse shatso by means of four nitre wheels. Each of these transverse shatst carries a cam or lif whect, and one or them is provided (out
side the framing) with a fy. wheel and handle. From two brackets (placed one on each side of the machine), extend in contrary directions four arms resting
upon the cam or len wheels, and upon hheee emmss rest two thans convected to

 having rather larrer openings than the lower one) are connected together by a
series of silghtly conical or taper tubes, soldered or otherwife fixed to the
 the perforations. The upper or sopply box is a wooden frame with or vertical
division plates, from whilch short transverse division plates stand o ot tically, but at right angles to the eater. Close under the lawe out, alise ver
booxes is a grating, having forty-ive divisions, and tereat
 right angles to the lower grating, and capable or being separated to recelive
the spllints, and presece closer together to hold the same fromy. These lathe are opeed ends of which, passing upwards through the lower grating, aro Wedge-rhaped, and which are capable of rising and falling, belng actuated by
a toothed rack and pinion driven by a winch hande, and upon terir belyg witharawn the luths are presed together, so as to hold the splints by means
of A silding bar and croskhead, to which latter a bar of wood is fixed, the sliding bar beting actuated by a rack and piliton driven by a winch handie
The ome of Working is as follows:-The two boxes are raised and opened
out to

 offect of sthaking the splints from the supply box into the taper tubes, and
ibrough them belween
 falling; in that case the latter must be removed, and the broxenta it trom
closec, down and the dipping box is then niled. The fingers are now withdrawn from
between the latis, and the later are presed up closely, to as to hold the
 purpose, the dippling frame with tss splints may be removed from the machine,
ind and the operation be repeatea as before. The lo
be found to be exnactly even and realy for dippling.
 lasts for boots and shoes, whereby greater facilty ys afforded for witharawing the last and holding the parts together, and provision tis made or shaping the
forming the leg of the bot theren. In carrying out the inventon the
patentee proposes to construct the last in two sections, each cut or formed

 sectico of the wast Male and female dovetails are caston enach of the Junction
surfaces of the fections of the last respectively so as to hold the parts securely
 which supports the last when in ase, and thereby in connection
tail locks, or holdd the two sections of the last securcly together.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

Correspondent.)
Change in Wolverhampton : Another Brown Failure-On
Change in bramgelam: The Orders for Iron for Canada:
 DUDLEY: Iron and Coal-HARDwarks: Continued Improve-
ment - FAIRFAX AND Co.'s AFFARS - Governaer MIves
 The meeting of ironmasters on 'Change in Wolverhampton on
Wednesday was not numerously attended, but considering the Wednesday was not numerousty aes done, though slight, is en-
attendance, the amount of businest
couraging. The tone was not, however, cheerful, it having become known that another fail, The concern is that of Mr. William Shaw, of Old Park House,
Park-street, Birmingham, railway stores contractor. His suspen. Park-street, Birmingham, raiwws
sion is understood to be due to the difficulties of rail way con-
tractors of reat eminence, with whom, up to the time of their Ttoppages, he did amarge business.
The meeting of ironmasters on 'C
Thursday) was not attended with much business nam yesterday tone of the market more satisfactory than last weeek. Whis whist the to affect the trade to any considerable extent, still it produced an to anfect the equadeling: The stoppage is supposed to be due to the
unffuoulties under which the large contractung firms have recently
difticula difficulties under which the large contracting firms have recently
succumbed. There is stila a good trade beeing one in the best + ualities of pig iron produced in the north of England, and also in hematite
stones brought into this from other districts, and high prices are stones brought inte this from other at the mills and orges where
obiained. Activity is manifested at obained. Actinders are usually got out, every effort being put
the Canadian ordite
forth to get the iron away at the close of this week, the latest date Corth to get the iron away ae made by sailing vessels. So bare,
at whick shipments can be made
however, have the different works been of orders, that the fims at which the finished iron has usually been rolled for Canada have
been turning out only half as much as they usually make for that market at this season of the year, other firms taking the specifica-
tions an tions at lower igures than these have been willing to accept. the tinplate works are overstocked with orders, even with prices
at 24s. for I . C. The completion of the British American trade
. forts. wiall leave but few orders upon the books for the foreign
parkets, and the fear is being expressed that the recent dulness will again appear, without any favourable change until spring fav masters, who are more cheerfuly inclined, point of the East Indian and United States markets, in the excellent harvest in Great Britian.
From Dudley the report is :-West of this town there has been a better demand this week for phates, and the arge mils hare been and the emen are doing generally four and five turns per week
Things look rather more cheering, but the general opinion of those who are likely to be well informed upon the subject is that there will not be any great improvement this year. Pig iron is a little
stiffer in mouth, probably expecting that it may be bought in a short time on easier terms; ; but the price of the raw material is not ihe The consequence will be that the pro-
be lower at present ducers of pig iron wil not be able to give way in price if they are
to secure to themselves any profit. Some wealthy pig masters still
hold largely and refuse to sell except on a moderate seale existing rates. There is no coal in this locality equal to "thick coal "for general purposes, hence the demand which, considering
the period of the year, continues very good, and large quantities
隹 home markets. A good quantity of hematite, hydrate, and Northamptonshire ironstone is being brought into this locality, but the native produce still holds its position, and where it can be had is
largely bought up by certain parties to use as a mixture with the orner qualities
The slight im
The slight improvement in the hardware trades in Birmingham placo notwithstanding the advance. in price, and tin-plates cannot placo notwihstandompt delivery even at 24s. per box, I. C.
now be had for prown
The liabilities of Messss. Fairfax, Bryson, and Co., are shown be $£ 45,000$, and the assumed assets, 12. . in the pound, but many creditors wauger of the Midland Bank, to Mr. William Barker (electro-plater), and to Mr. Broughton (Broughton and Smith.) The question of legal responsisity in the management of coal courts here, upon proceedings ensty ued sucessful in showing Inspector of respossibility rests not upon the underground workers, but upon the owners and upon the managing engineers. Against shire and East Worcestershire bave combined, and they are now an incorporated society, with Mr. Johnson, mining engineer, of
Dudley, as their secretary. Last Monday Mr. Johnson was Sedgley, as "agent" at the Moor-lane Colliery, Brierley-hill, and the same offences, namely, not having fenced off a fly-wheel, and
not supplying an indicator to an engine. The inspector had experienced some difficulty in ascertaining upon the coiliery the facts
that would have enabled him to fix the responsibility upon one of the two, and so consulted the Home-oftice, when he received instructions to summon both. The facts were not got
were postponed till next Friday at Wolverbampton.
Ad Infpearrly meeting of the Midland Steam Boiler Assurance
And Inspection Company was held in Wolverhampton and Inspection Company was held in Wolverhampton on Wednesadopted, and special thanks voted to the boord of of reportos were the assistant enineer, by whe secretary's report was :The profits of the financial year ending June 30 th, 1867 , are
$£ 627$ 15s. Id., a result which the directors consider very satisfactory. Your directors recommend the declaration of the usual fund be made up to $£ 1000$, and that $£ 300$ be written off the
 proposed to carry for ward. Crie business arising from the notrth
of England, and which is carried on by a committe of gentlemen in that locality, has largely increased, and promises to be ot very
great importance to the future prospects of the company. The
Tist below gives the number of boilers now under the care of list beow gives the number of boiners now under tion care of
the company on July 1st, 186 , - Suthern Division: boiles
assured, 674 . boilers inspected, 876 . Northern Division: boilers
 directors have much satisfaction in noticing that since the
formation of the company in 1866, they have been enabled to discharge, withina very trifte, the large preliminary expenses incident have paid a fair dividend to their shareholders, and have, by the careful attention given by their engineers and inspectors to the
cher boilers under their charge, had only one accident entailing any
considerablo loss on the company during that time. They trust that The engineer's report states, "that up to June 30th, 1867, there

any boiler under the care of the company. During the half-year there were made the finspections of boilers, and of thent to owners as to matters needing attention. Many engines have been indicated, and hech appreciated.

WALES AND THE ADJOINING COUNTIES.
 Transactions: Cheerfill Asprot of the Home Trade: Continuation
of Farourable Adruces prom Foreign Markets. Anticipated
Increase of Exports-THE BLINA AND CWM CELAN WORKs
 and Prlawenlur Water Works: Declaration of Dividend
The Cambrian Railways: Meeting at Creve-The Taff Vale The Cambrian Railways: Meeting at Creve- The Tapr Vale
Rallwav: Appointent of Secretery--Monouthihire wagon Since last report a slight improvement has taken place in the iron Srade, but trade enenerally is quiet. Buyers of iron are not so
tackward as they were a few weeks since of entering into new ransactions, more especialiy for miscellaneous qualities; and, upon the whole, a better feeling prevails. On home account mat
ters are looking a little more cheerful, and as soon as the railway companies are able to exercise the borrowing powers grantod to them by Parliaament, it is expected that considerable orders for rails will be given out; and once the necessary funds are forth-
coming, the present low quotations for iron will, no doubt, prove astrong inducement to make large purchases. Aiready there is a ittle more doing in rails, but until the companies can fully txer-
cise their borrowing powers, orders will not be given out very cise
freely. From the foreiggn markeets the advices continue tolerably
faveonable as regard future requirements. The United States are likely to be large buyers of railway iron; and as soumh Wales enjoys a high reputation in the markets of the United States, for
ber tough "Erie" iron, and has better access to the trans-Atlantic seaboard than any other iron-making district, there is every probability of anticipations as to the increase of exports to Ainerica being reaisid. Considerabe extenive purchases have hitherto been
India, Russia, \&c., and as exter made for these countries, it is only reasonable to anticipate a increasing; and shipping parels have been more sought after than for some weeks past, but there is no change in prices to note. In pig iron a fair anount of business is being done, aud prices emain firm.
Nolyn Wuitable offer has yet been made fort the Blaina and Cwm which is much to be regretted, as the prosperity of Blaina and the neighbourhood will be eftected to a very serious extent by the
stoppage of the ironmaking branch of so large and inportant works. The collieries are still being worked, and it is intended to keep them going, at least tor some time to come.
The Dowlais Iron Company, it is reported, have made arrangements for the exclusive right of working Bessemer's patent in
Glamorganshire, $£ 10,000$ being the amount paid for the concession.
There is a good demand for tin plates, both coke and charcoal In freely at the current rates In the steam coal trade the slight improvement which took
place about a week ago is, to a great extent, maintained, and
The half-yearly meeting of the Newport and Pillgwenlly Waterworks Company was held at Newport on Monday, and a dividend at the rate of er per cent. apoo che original capital per annum A meeting of debture holders
brian railways has been held at Crewe, in order to port from the accountants as to the inancial position of the under taking. In the absence of Earl Vane, Min. J. Bancroft occupied
the chair. The report of the accountants (Price, Holyhead, of the Cambrian railways amounted to $£ 3,434,837$, of which e824,205 was in ordinary stok, $£ 1,760,10$ in preference
stock, and $£ 850,462$ in mortgages. For the Aberystwith and Welsh coast section the total capital raised amounted
to ¢1, 394,332 , of which $\ell 265,420$ was in ordinary shares, C 3000460 in preference shares, and by Mr. Savin, but it did not appear that a proper contract had been entered into until a few days previous to Mr. Savin's suspen sion. The report goes on to give details of the position of
Mr. Savin, with several undertakings, and the conclusion arrived at is, that at the time of the suspension he was indebted to the
companies to the extent of $£ 203,513$. The accountants by stating that the Amalgamation Acts, under which the Cambrian Company had been constituted, were perfectly unintelligible, and the interests of the various classes of sharcholders appeared in
several instances to be in direct conflict, and consequently it was of the utmost importance that an endeavour should be made to re-arrange the interests
should be the meeting was a friendly conference between the parties
interested in the Cambrian property. He suggested that the present Amalgamation Acts should be repealed, and that power The capital, which now amounted to $\ell 3,600,000$, should be re able reduction, according to priorities, in every clase of equit ences. It was not proposed to interfere in any way with th
bonded debt. The ordinary stock would also be largely reduced, and, as soon as $2 \frac{1}{3}$ per cent. was paid upon it
then all the additioual provits would go back again to
the preferences. The object of the plan was two.fol the preferences. The object of the plan was two-fold-
first, with a capital so large they could not expect t declare any considerable dividend and maintain a goo
credit before the public; scoondly, if the London and N North Western or any other large company desired to purchase the Cam brian they would be more likety to oook at it with a capital account
in an intelligible state. Capt. Johns, a director, disagreed with in an plan, and maintained that the accountants' report was inaccu n gentlemen were appointe a committee to confer with the directors as to the best means of re-constituting the company.
Mr. Marwood, account
Mr. Marwood, accountant of the Somerset and Dorset Railway has been elected secretary to the waft Vale line, to fill the vacano
caused by the death of Mir. Kenway. There were 150 applicants for the post. W At the Monmouthshire Wagon Company's half.-yearly meeting
held at Newport, a dividend at the rate of $£ 5$ per cent. pe annum for the half-year was declared. The profits of the Com pany would have enabted the directors to have declared a larger
dividend, had it not been that some exceptional expenses were

SCOTLAND: ITS TRADE AND OPERATIONS.

The Glaggow Pig ifon Market-Manufactured Ibon-The Enginekring and Iron Shipbuliding Company, (Limited)-
packet Company-Launches during the Past Week.
The pig iron market has been more animated during the past
week than for many months past, and a large business has taken to
to
place daily. Prices bave advanced 1s. per ton, and most of the
leading makers have advanced their prices 1s, to 2 s . To day (Wednesday) over 10,000 tons were done at from 54 s . to
 shipments of the week, stil
sponding week of last yeal
For manufactured iron there is abetter feeling in the market, and considerable orders have been given out within the lust two days
for shipment. The maller makers are almost all fully employed, and generally there is more doing at all the works. Prices con. with a continuance of trade we may look for some slight advance on the cheaper brands.
In shipbuilding iron there is more inquiry, but not sufficient to
 angle iron, $£ 2 \mathrm{~s} .6 \mathrm{~d}$. to Ed , pless usual discount. Coals continue in steady demand for home use and for export at ping, per ton of twenty hundred weight laid down, 6s. 6d. to 7s.,
best splint, do. 7 s .3 d . to 7 s . 9d.; Wishaw and Household, for
shipping 12 s . $6 \mathrm{~d} . ;$ second qualities, per do., 9 s , to 12 s ; ; quarter, best
quality, delivered per wagon, 13 s .; steamboat, per 24 owt., 10 s . qual.
to 12 .
The advices of coal shipments at the principal ports still show an amount
last year.
On Thu
the districts of meeting of delegates from the several collieries in was held in the Brandon Hoter, Motherwell, to consider the proposals now before the districts by certain of the masters,
with a view to putting an end to strikes and lockouts, in order that a proper understanding might be arrived
at in regard to them. Mr. John Smith was called to the chair. After several reports had been given, and some conversation
taken place, Mr. Joseph Orr moved ${ }^{\text {TRAT }}$ The accept the terms offered by the masters, to commence on or before the 1st September, and that the men do not enter into a strike before that. Mr. Thomas Robertson seconded the motion, which was carried
unanimously. Mr. Steel then proposed, "That, on 2nd Septem.
ber Mor, every work in the four districts, Motherwell, and wishaw, should send a delegate to a meeting to
be held in this place to receive the anserss from the varius
masters." Mr. Andrew MoCowie seconded the motion, which was carried unanimously
The chairman then intimated the arrangement made with regard
to giving Mr. McDonald a valedictory demonstration in the Cit
Hall,解 The following is a report of the directors of the London and Glasgow Engineering and Iron Shipbuilding Company, Limited, to
be presented to the shareholders at the fifth ordinary meeting to tion of today :- Your directors showing the result of the working for the past year. The dired tors believe that when the unprecedented depression that has so
long weigbed on the shipbuilding trade is taken into consideration long weigbed on the shipbuilding trade is taken into consideration
the shareholders will concur with them in opinion that the statepayment of all current expenses and charges, including interest on the balance of purchase money, reserving $\ell 4970$ for depre.
ciation of buildings, plant, tools, \&e., and writing off $\mathcal{\ell} 1000$ from preliminary expensos, mend should be appropriated as follows:- Dividend of \&1 per share, being at the rate of 42 per cent. for the past year, free of income
 10s. 7 d . In recommending that this amount should be carried
forward, the directors have to call the shareholders' attention to the present condition of the trade, which they consider likely to
continue depressed for some time to come, and therefore it would be imprudent to pay a high rate of dividend. The balance re-
mainigg, with the present available capital, will be sufficient to enable the directors, satisfactorily, to conduct the business of the
company. The directors who retire by rotation upon this occasion company. The directors who retire oy rotation upon this occasion
are William Hamilton, jun., EEqq, and David Smith. Esq., who, to deplore the loss during the past year, by death, of one of their colleagues, Robert Walker, ELs.. whose place it it not propopsed to
fill up. The auditors, Messrs. Coleman, Turquand, Youngs, and Glasgov, also retire from office and are eligible for re-election.

Messrs. Wm. Denny and Brothers, Dumbarton, have contracted
to build for the Vicero of Canton, China, two composite gunboats The Letterkenny and Glasgow steam Packet Company, which was lately established to promote direct steam coumunication
between Letterkenny and Glasgow, not having secured sufficient support, has abandoned the oi oiginal intention of the manugers.
It has, however, been determined to run a steauer between Letterkenny and Farland-point, in conneetion with the trains on Lough
Swilly Railway, from that place to Londonderry.

NOTES FROM THE NORTHERN AND EASTERN COUNTIES.
 Progress in Lancashirg-Rallway Compensations-Mid.
LAND Rallway-Manchester Institution or EngineersViaduct over the Derwent at hutton-North-Ea-tern

 letter was read rom raessrs. Wison, son, and Waltor, and
Messrs. Fletcher and Parr, drawing attention to the combination of railway companies whose lines connect Liverpool with the eas coast, and several stoanship proprietors at those ports, in oppo
sition too the direct ilines of steauships between Liverpool, Retter
daum, Antwerp, and Hamburgh. Rites, it was stated, were so reduced that goods were now conveyed by rail and steamer througg
to Rotterdam, Antwerp, \&c., on lower teroms than had for nany on some goods being equal to 50 per cent. on previous
existing rates, and vastly out of proportion to the charges
for the convegance of sinilar goods to Manchester and or the conveyance of similar goods to Manchester ant
other places not one.tenth of the distanee ; the letter was
referred to a sub-committee. The Mersey Docks and Harbour
Boand Board has established an electric time gun, which has been placed
on the north pier of the Morpeth Dock, Birkenhead. The arrangements for utilising this time gun are now nearly completed, and in
is expected to be ready next month. It is to be fired daily at on p.m. The net receipts derived by the Mersey Docks and Harbou
Board for the use of the appliances provided for the shi Hnent
cnal at Birkenhead, for the year ending June $24 t \mathrm{tb}$, 1867, were
 dok engineer, on the dook works at Liverpool and Birken-
heed, turing the year ending June 2 tht, 1867 , stites that
the north river wall nas been completed toits northern exiremity
a total length of 1596ft, and a raised terrace with a retaining wall had been taken to ensure its stability. The dock lines of railway had been extended to the timber storage yards at Bootle; and the Laneashire and Yorkshire and London and North-Western Railway Companies had opened new communications with the north masonry and excavations are completed, and the laying of the gas ad water mains and the paving of the quays are in progress. The masonry, with the exception of a portion of the surface finishing island is also completed, indet. A great portion of ese south finished to the level of about 8 ft . below the coping. About 140 ft . the south wing wain, to form a junction with Lue river- wald bridges, and capstans of the several entrances, with the bydrautio machinery for working the same, are advancing towards completion. The east block of the corn warchouses is completed, and the is nearly completed, the roof is in an an hand. the ironwork being nearly fixed or on the grand, the arching for the third and fourth floors and the whole of the sixth floor is in progress, The walls, iron beams, and columns of the north staek are completed to the level of the fourth floor.
The works of the Aston, Runcorn, and Ditton Railway, one of he London and North-Western's new branches, are sufficiently portion of the line, while the materials are in course of delivery The viaduct, consisting of ninety-eight arches, through Runcom and over the marsh on the Lancashire side of the Mersey, is nearly completed; of three openings in the bridge over the river two are finished, while the scaffolding for the third or last opening is being length, is completed, and will be opened for traffic on the lst of

The Rilway Compensation for Injuries Act appears to be pressing harder and harder upon the railway companies. In the past half year the London and North Western paid $£ 75,000$ under this heud, as compared with £48,000 in the previous half-year. The and North Western Company at the rate of £150,000 per annum The expenditure on the Bedford and London section of the Mid-
land Railway to June 30 th was more than $£ 3,000,000$. During the past half-year nearly $£ 1,500,000$ was expended by the company on Thes and works.
The Manchester Institution of Engineers has just held a general report, which stated that since the Institution was formed in March its progress had been in every respect satisfactory. At the first meeting there were present eighteen gentlemen, who formed from themseves a committee, and appointed that committee to draw up ru'es and to lay down a basis for the permanent establishment of
the lostitution. At the second nueeting the number of members increased to forty-eight, and from time to time sixty-four members, eight associates, and one graduate had been enrolled
The cbairman said he had been requested to add that a library would be established and a room opened as soon as possible. The The wast of siopted.
the Scarborough Railway across the Derwent at Hutton has been safely placed in position. In a few weeks it is expected that the viaduct will be ready for traffic.
A portion of the Hexham and Allendale Railway from Hexham
to Langley, a distance of nine miles, has just been opened for goods and mineral traffic. A screw steamer named the St. Lawrence, and engined by Messrs. Pattison and Atkinson, of the Mushroom quay, has made a satisfactory trial trip on the Tyne. The St. La wrence is intended to be employed in the coasting trade. It is
understood that the extensive rolling mills belonging to Messrs. Pile, Spence, and Co., are likely to pass into the hands them for the manufacture of steel, The dividend of the South Shields Gas Company dous not exceed 3 per cent. per annum, and
the directors have been "reluctantly obliged " to raise the price of gas to 4 s . per 1000 cubic feet. The Blyth and Tyne Railway Compan will shortly open a new branch to Cambois colliery ; the Blyth and Tyne, it is satisfactory to observe, maintains its divi-
dends. One of the arches on the Lune Viaduct on the Tees Valley Railway gave way on Friday. The number of furnaces in blast in the Cleveland district is 89 , while the number out of blast is 45 . Cleveland appears to have obtained its full share of recent foreign stock in the whe eveland pighen rad is in a steady state; the as compared with 65,000 tons in January. The shipbuilding yard Ship Tyne and Tees show slight indications of improvement gards during the Baltic ports. Theshipments of coal from Blyth harbour 121,966 tons in the corresponding sixmonths of 1866 . During th past half. year the completion of the wave-trap has been effected fing on the north side has been sufficiently advanced ection of two spouts. it is intended to continue this work during the autumn. A dredger, the hull built by Messrs Robinson, of Jlyth, and the machinery by Messrs. Hawks and hopper barges for disposing of the mesterial dredged company; two contracted for with the Floating Dock Company, of Blyth, and one them bas been delivered. The cost of this plant is estimated about $£ 5000$. The Xantha, a handsome screw yacht, built for Lord Alfred Paget, is receiving the finishing touches at the hands line of railway between York and Doncaster are making great The contractors for the Hull and Doncaster line, Messss. Brassey and Co., have made considerable progress with a great bridge across the Ouse at Howden.
Mr. J. Brown. of the Λ tlas Works, Sheffield, has received the honour of knighthood. There is but little change to report in the state of business affairs at Sheffield. Complaints are general as ches, and with the exception of the American trade there is but little doing in files. There is only a moderate demand for steel for manufacturing purposes, most of which is for the Continent aud America ; but for steel railway matiriel, there continues a good in quiry. The iron trade is dull, and there have not recently been any large castings.
Il de iron trade of the South Yorkshire district continues quiet in there is a better demand. In the steel trade, also, there is a good demand for railway materials,
On Saturday a meeting in connection with the re-opening of the
Oaks Colliery wis held on the Oaks premises, and was attended Oaks Colliery wos held on the Oaks premises, and was attended
by three Government inspectors and twenty-two mining engineers and others interested in the mine. After a discussion which lasted process of apening be procceded with and a report forwarded daily to the chairman, with a view to his summoning another meeting whenever he may think it necessary; and that it be the duty of the acting engineer to stop the works if any unfavourable symptoms be observed, and to report the same to the chairman, Mr. T. E. Foster, general meeting if he thinks fit ; and that it also be competent to the chairman to stop the works if he see it necessary at any time from the results of the daily reports. The meeting was divided in opinion as to the prevalence of fire in the mine. As the contractor has got as far as the archway at the bottom of No. 1 shaft,
entrance to the mine is expected to be shortly accomplished.

FOREIGN TARIFFS ON METALS AND METAL GOODS.

Asticles.	New Duty.	
		$\begin{aligned} & \text { Eneluah } \\ & \text { Measer } \\ & \text { mond } \\ & \text { money. } \end{aligned}$

Raw of all kinds, and old broken fron
Hammered and rolled
iroue
iron io lumps, rallis for rallwaye, raw exped) in bars,
and

carriages, cranks, axles \&so., provided each part weigh oue centher or more
(1) Raw steel imported by sea from the Russian
frontier as far as the meuth of the Vistual by special permisision for the use of steel
(2) Lump iron, not purifed from" the dross, in
massea or prisms
(3) Hammered and rolled iron and steel of $\ddot{2} \ddot{a}$
Prowsian line in thickness or of more Prussinn tinches in widith, pays as iron or ron shaped in bars, wheel tires for rallway carriages, Iron for ploughtrares, black sheet iron, raw sheet
steel. raw unpulisice iron and steel plates, and an-
chors and anchor chails, chors und anchor chains.
stoel plates
Tio plates. and rol
Iron and steel Wares;
Very common cast wares, as stoves, plates, rallings,
\&ce. .
 not with wood, but not polished :-

 brads, tags, screws, pans, plouktishare
fat ironk, common rings, gridirons, sho Bat rons, commina rings, gridirons, she
vels rough ca t wares,
tilt bammer carriage and door handlies, carroriage sespringes
$\&$ \&., provided that these aricle. are ne \&c., provided that these ariclece are nee
ther wholly poilished, varnistied, coppered,
nor timued
(b) other common
 files, hammers hatckets, sword-blates, phanes, cuffee
toasters and mills, locks, viees

 Fine; of tine cav
aleo of tron
(except those which pay as " with other watl Wares") (a) Luiquered iron ware, kmall Wares") wne wiluing nee
(b) Sewing, \&ce. (and exceptiest thosword makel metal pens, wa chect anes and watch work
of common metals, weapons of and sman aricles nepons of all kitsd "Sma" Wares" Instraments, nurbicial
Frirarms and swords; See Fine Iron Wares.
Sword-blades. See Common Irun Wares.
Sword blades. See Common Itun Wares.
Shot
..
Mathinery:-
Locomouy
Locomouves, tenders, and bollers
Other machnery pays ace rding to the weight of
or
Che predominating maturial.
Cyliners, for pripting and for dressing Use ues :-
Engraved
Pngiu
Pards

Iron and Steel Wares :-
(c) Iron rails for railw (c) Iron rails for railways
(d) Steel raw, comented, cast, and refined
(e) Iron pate, black, iron, and steel plate, (f) 1. Iron plates, politese 1. Irou plates, polished, timned, lacquered, or
varinthe'; steel pates, poli- ued; als Iron wire, and unpolished stee
Iron, refined in shapid bars
(g) Clusse wrooght ircn, parts of machines, car of which welash reapecuively one centner an upwards ; plougtwhares, auchors, ancho
and rhips
andins struments
Coane cast wares; as ketles, \because stover,
wheels, plates, and ing more than 251 b ., and parts or ma-
ch neyy, each part welghing above 100 lb . . Iron Wares:-
(i) Most sost common: not partly or wholly polished,
smoothed, varnished, enamelied, or tac (k), and (l) and not named under (f), (g), (i), (k) Common: 1. Axes, saws, seythes, slekle chopping knives, chisels, planes, cooperi
knives, nites, rasps, clothmatera' and talior
 bru-bes and sieve bottums
2. All wares named under (j) and ($k i$,
,
($)$ Fine: Al artucles polished (except thos under (k 1), painted, lacquered, or var
nithed (except sewing needles), but not really git or alvered, or coated with a gold
2. Articles in combination with other
materials (except those which come under
materials or Fept Leather, waich inda-rubber, or
table knives, sclasors, wire gauze and ine wire work (except sleve boitoms); clasps,
hooks, wire covered with paper, carding irons, and scrapera
3. Arms and par
郎 sprinzs and watch and clock works, and
teel beads

Sewing needles

Of cast 1 on

or wrought iron or ste 1 .
Instuments, ma:hematical, surgiceal,
$\underset{ }{\text { Shot }}$ Yercustion \quad cap
Arms and paris of arms.".
Note, - Machinery for the use of national industries
may, by ppecial permission, be fimported at a rednced

		permisalon) .	Free	
per centner	per cwt.	Hammered or rolled, in bars or sheets, and wire ..	1294	$0{ }^{0} 4$
	${ }_{c}^{8} \mathrm{~s} . \mathrm{d}$	Sheetr and wire, plated.: -.		012
		Wrie name ${ }^{\text {Coppersmiths }}$ works, such as stmi" pans, irons,		9
25	0261	weights, hooks, hinges, taps, trowels lamps. can-		
${ }_{05}^{25}$	6	clasps or handies, scales, and similar coarse wares,		
05	6	wood or iron wind		082
25	0261	Other klids, plain or in comblnation with other materials (exeept those included under "Small Wares"		${ }_{5}$
		oumerated AUSTRIA.		
		Brass or Copper :-	F1. k	E s. 0.
15	0 1 6]	Pure or mixed, in blocks, cakes, bars, lumps, ¿c.; also old broken copper, and copper ash	Yree	Yree
17)	0 1 9/4	In sheets or plates, wire and strings for instruments; also targe castings, as bells and tubes, welghing more than 25 ib , and other arileles weighing more		
		than 10 it each Note--Copper cylinders, engraved or not, may be imported, by special permisston, for the uve of national stuff pristers, at a duty of 75 kreutzers per centner, is, 6id, ber cwt.	600	0122
05		Bravs and Copper Wares:-		
		Cylinders, boilers, bowls, plates. pots, and other kitchen utensils, not otherwise spicificd	750	015
${ }_{15}^{24}$	$\begin{array}{llll}0 & 5 & 4 \\ 0 & 7 & 7\end{array}$	otber kinds. of pure or muxed minal, not gill, silivered, or larguered comtines or not with uter		
		materials (except fine leather, indla-rubber, or		
12	21	.		
		plates and wire, plated or silvered.: ${ }^{\text {and }}$		

LEAD.-THE ZOLLVEREIN.

haw, in blocks and plgs, and Rotled, and printing types

Coarso asulietlles, plper, hot, wire, \&e, not polished
or licgured; also to combination with wood or iron
or lacquered; also to combination with wood or iron
Fine, and lacquered warksi also if combined with
other materials (except those included under "Small w
White $w=$ ad
Rea lead
 TIN.-THE ZOLLVEREIN.

	$\begin{gathered} \text { hir. } \mathrm{ggr} \text {. } \\ 0 \end{gathered}$							
keties, and other versels, not polished or lacquered, aleo in combination with wood or iron								
Fine, and lacquered tin wares, plain or mixed with other materials (exeept those which come under								
all wares not otherwise enumerated								
AUSTRIA.								
Tin Raw, in blocks and bars, and ola broken tin.. ..	$\underset{\text { Free }}{\text { Fl. kr }}$							
Tin Wares-Common, snch äs cylinders, $\ddot{\square}$ kettles,								
plates, \&80, and other kitchen utemsils								
e tin wares, not gilt or silvered								

[^0]: 177. A. ApPs, Strand, London, "Electrical apparatu,"-Dated 24th January,
